首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2985篇
  免费   212篇
  国内免费   6篇
  2023年   26篇
  2022年   69篇
  2021年   125篇
  2020年   144篇
  2019年   244篇
  2018年   188篇
  2017年   138篇
  2016年   162篇
  2015年   160篇
  2014年   203篇
  2013年   284篇
  2012年   271篇
  2011年   244篇
  2010年   148篇
  2009年   115篇
  2008年   103篇
  2007年   132篇
  2006年   104篇
  2005年   71篇
  2004年   63篇
  2003年   55篇
  2002年   47篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   7篇
  1997年   10篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   2篇
排序方式: 共有3203条查询结果,搜索用时 350 毫秒
1.
2.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
3.
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   
4.
Cataract is the major reason for human blindness worldwide. α-Crystallin, as a key chaperone of eye lenses, keeps the lenticular tissues in its transparent state over time. In this study, cataract-causing familial mutations, P20R and A171T, were introduced in CRYАB gene. After successful expression in Escherichia coli and subsequent purification, the recombinant proteins were subjected to extensive structural and functional analyses using various spectroscopic techniques, gel electrophoresis, and electron microscopy. The results of fluorescence and Raman assessments suggest important but discreet conformational changes in human αB-Cry upon these cataractogenic mutations. Furthermore, the mutant proteins exhibited significant secondary structural alteration as revealed by FTIR and Raman spectroscopy. An increase in conformational stability was seen in the human αB-Cry bearing these congenital cataractogenic mutations. The oligomeric size distribution and chaperone-like activity of human αB-Cry were significantly altered by these mutations. The P20R mutant protein was observed to loose most of the chaperone-like activity. Finally, these cataractogenic mutant proteins exhibited an increased propensity to form the amyloid fibrils when incubated under environmental stress. Overall, the structural and functional changes in mutated human αB-Cry proteins can shed light on the pathogenic development of congenital cataracts.  相似文献   
5.
Extracts of the human promyelocytic cell line HL-60 contain a form of beta-N-acetylhexosaminidase that is not retained on columns of benzeneboronate-agarose ('phenylboronate-agarose') and has a pI value lower than that of beta-N-acetylhexosaminidase A. It is clearly distinct from beta-N-acetylhexosaminidase A in its behaviour on DEAE-cellulose columns, and it requires a higher concentration of salt for its elution. This 'extra' form has a higher ratio of activity towards 4-methylumbelliferyl beta-N-acetylglucosaminide 6-sulphate and 4-methylumbelliferyl beta-N-acetylglucosaminide than has beta-N-acetylhexosaminidase A and is less stable when heated at 50 degrees C. It has a pH optimum of 4.5 and is therefore not beta-N-acetylglucosaminidase C. Anti-(human beta-N-acetylhexosaminidase alpha-subunit) serum precipitated both beta-N-acetylhexosaminidase A and the 'extra' form, whereas an anti-(beta-subunit) serum precipitated beta-N-acetylhexosaminidase A but not the 'extra' form. Western blotting and immunodetection of polypeptides derived from the 'extra' form revealed a band corresponding in size to mature alpha-subunits. On the basis of this and of its behaviour on isoelectric focusing, chromatofocusing and its kinetic properties, we conclude that the 'extra' form is composed of alpha-subunits and resembles beta-N-acetylhexosaminidase S, the residual form in Sandhoff's disease.  相似文献   
6.
A vertical gel electrophoresis apparatus is described which can distinguish DNA fragments differing by single base pair substitutions. The system employs a homogenous polyacrylamide gel containing urea-formamide and a temperature gradient which runs either perpendicular or parallel to the direction of electrophoresis. The temperature-gradient system simplifies several features of the denaturant-gradient system (1) and is relatively inexpensive to construct. Eight homologous 373 bp DNAs differing by one, two, or nine base pair substitutions were examined. DNA electrophoretic mobility changed abruptly with the temperature induced unwinding of DNA domains. GC to AT substitutions at different locations within the first melting domain, as well as an AT to TA transversion were separated with temperature gradients parallel to the electrophoretic direction. The relative stabilities of the DNAs observed in the gels were compared to predictions of DNA melting theory. General agreement was observed however complete correspondence was not obtained.  相似文献   
7.
Pluronic F68 (F68) is a nonionic surfactant which has been reported to inhibit the in vitro adherence and migration of polymorphonuclear leukocytes (PMN) obtained from some species. We demonstrated similar effects on PMN obtained from rats, with diminished adherence to nylon wool and diminished chemotaxis toward zymosan-activated serum. We then examined the in vivo effects of 12-hr F68 infusion on the injury induced by intratracheal bleomycin instillation (ITB) in rats. When sacrificed 24 hr following injury, rats demonstrated neutrophilia, neutrophil-prominent lung lavage cellularity, and increased lung weights. F68 decreased lavage leukocyte counts and lung weight gain in ITB-injured animals. Lung weights of ITB-injured animals correlated (r = 0.81, P less than 0.001) with logarithmic values of lavage PMN. F68 also enhanced neutrophilia and decreased spleen weight gain in injured animals. The acute effects of F68 on circulating leukocyte counts, osmolality, and total complement were also examined. The data demonstrate that F68 can affect PMN traffic both in vitro and in vivo. The data also confirm the prominence of PMN in lavage fluid early in ITB injury, and suggest that an influx of relatively few PMN is associated with lung weight gain in this model.  相似文献   
8.
In vitro differentiation studies using the bipotential human leukemia cell line, HL60, have indicated that high levels of expression of two proto-oncogenes, c-fos and c-fms, are restricted to the myelomonocytic lineage. No such expression has been detected in induced granulocytic cells. In striking contrast to these observations, we found that c-fos mRNA levels are very high in purified human granulocytes, but barely detectable in blood monocytes and tissue macrophages. Human granulocytes contain, however, relatively low levels of c-fos protein, indicating that c-fos mRNA is inefficiently translated or that the protein is rapidly degraded in these cells. In closer agreement with the in vitro results, the level of the expression of c-fms is high in purified blood monocytes and undetectable in granulocytes. We found, however, that the evolution of monocytes into tissue macrophages is accompanied by a significant decrease in c-fms expression, suggesting that the function of c-fms is restricted to specific stages of monocytic differentiation. Our observations also show that results obtained using in vitro differentiation systems have to be regarded with caution, since they may not reflect the in vivo situation.  相似文献   
9.
A calculated approach based on the Higgs method for assigning the vibration modes of an infinite helicoidal polymeric chain has been performed on the basis of a reliable valence force field. The calculated results allowed the phosphate-backbone marker modes of the A and B forms, to be interpreted. In the dynamic models used, the bases have been omitted and no interchain interaction was considered. The calculation can also interprete quite satisfactorily the characteristic Raman peaks and infrared bands in the 1250-700 cm-1 spectral region arising from the sugar or sugar-phosphate association and reproduce their evolution upon the B----A DNA conformational transition. They clearly show that the phosphate-backbone modes in the above mentioned spectral region constitute the optical branches of the phonon dispersion curves with no detectable variation in the first Brillouin-zone.  相似文献   
10.
Naturally-derived drugs have drawn much attention in recent decades. Efficiency, lower toxicity, and economic reasons are some of their advantages that justify this broad range of administration for different diseases, including cancer. If we can find a specific combination that boosts the effects of their single therapy, leading to synergism effect, increased efficiency, and decreased toxicity, they can act even better. Quercetin and fisetin, two well-known flavonoids, have been used to fight against various cancers. In this study, we investigated their possible synergism quercetin and fisetin on MCF7, MDA-MB-231, BT549, T47D, and 4T1 breast cancer cell lines. Then the optimum combined dose was used to study their impacts on wound healing abilities and clonogenic properties. The real-time qPCR was used to study the expression of their validated downstream effectors in predicted pathways. A significant synergism effect (p < .01, combination index: <1) was observed for all cell lines. Combination therapy was significantly more effective in colony formation (p < .0001) and wound healing assays (p < .001) compared to single therapies. The expression level of potential effectors was also showed a greater change. In vivo study confirmed the in vitro results and showed how significantly (p < .001) their synergism promotes their singular function in inhibiting cancer progression. The breast cancer mouse models receiving combined therapy lived longer with higher average body weight and smaller tumor sizes. These results exhibit that quercetin and fisetin inhibit cancer cell proliferation, migration and colony formation synergistically, and matrix metalloproteinase signaling and apoptotic pathways are relatively responsible for inhibitory activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号