首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1431篇
  免费   129篇
  2023年   6篇
  2022年   8篇
  2021年   22篇
  2020年   16篇
  2019年   19篇
  2018年   32篇
  2017年   15篇
  2016年   41篇
  2015年   55篇
  2014年   65篇
  2013年   105篇
  2012年   113篇
  2011年   100篇
  2010年   67篇
  2009年   48篇
  2008年   108篇
  2007年   86篇
  2006年   84篇
  2005年   68篇
  2004年   62篇
  2003年   57篇
  2002年   62篇
  2001年   22篇
  2000年   24篇
  1999年   16篇
  1998年   20篇
  1997年   6篇
  1996年   5篇
  1995年   12篇
  1994年   19篇
  1993年   14篇
  1992年   16篇
  1991年   17篇
  1990年   9篇
  1989年   8篇
  1988年   5篇
  1987年   11篇
  1986年   10篇
  1985年   5篇
  1984年   5篇
  1983年   13篇
  1981年   9篇
  1980年   11篇
  1978年   5篇
  1977年   7篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1972年   6篇
  1967年   6篇
排序方式: 共有1560条查询结果,搜索用时 31 毫秒
1.
Recently, a random breakage model has been proposed to explain the negative correlation between mean chromosome length and chromosome number that is found in many groups of species and is consistent with Menzerath-Altmann law, a statistical law that defines the dependency between the mean size of the whole and the number of parts in quantitative linguistics. Here, the central assumption of the model, namely that genome size is independent from chromosome number is reviewed. This assumption is shown to be unrealistic from the perspective of chromosome structure and the statistical analysis of real genomes. A general class of random models, including that random breakage model, is analyzed. For any model within this class, a power law with an exponent of -1 is predicted for the expectation of the mean chromosome size as a function of chromosome length, a functional dependency that is not supported by real genomes. The random breakage and variants keeping genome size and chromosome number independent raise no serious objection to the relevance of correlations consistent with Menzerath-Altmann law across taxonomic groups and the possibility of a connection between human language and genomes through that law.  相似文献   
2.
The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant.  相似文献   
3.
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC–MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.  相似文献   
4.
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil, whose etiologic agent is the thermodimorphic fungus of the genus Paracoccidioides, comprising cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii. The mechanisms involved in the initial interaction of the fungus with cells of the innate immune response, as dendritic cells (DCs), deserve to be studied. Prostaglandins (PGs) are eicosanoids that play an important role in modulating functions of immune cells including DCs. Here we found that human immature DCs derived from the differentiation of monocytes cultured with GM-CSF and IL-4 release substantial concentrations of PGE2, which, however, were significantly inhibited after challenge with P. brasiliensis. In vitro blocking of pattern recognition receptors (PRRs) by monoclonal antibodies showed the involvement of mannose receptor (MR) in PGE2 inhibition by the fungus. In addition, phenotyping assays showed that after challenge with the fungus, DCs do not change their phenotype of immature cells to mature ones, as well as do not produce IL-12 p70 or adequate concentrations of TNF-α. Assays using exogenous PGE2 confirmed an association between PGE2 inhibition and failure of cells to phenotypically mature in response to P. brasiliensis. We conclude that a P. brasiliensis evasion mechanism exists associated to a dysregulation on DC maturation. These findings may provide novel information for the understanding of the complex interplay between the host and this fungus.  相似文献   
5.
6.
Sucrose non‐fermenting 1‐related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep‐Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1‐1 grik2‐1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1‐2 grik2‐1) that grows similarly to the wild‐type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1‐2 grik2‐1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1‐2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1‐2 grik2‐1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild‐type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.  相似文献   
7.
Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed.  相似文献   
8.
Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely halophilic bacteria that had ecological relevance seemed to be easier to culture than their archaeal counterparts.  相似文献   
9.
10.
Bacteriochlorophyll a-containing aerobic anoxygenic phototrophs (AAnP) have been proposed to account for up to 11% of the total surface water microbial community and to potentially have great ecological importance in the world's oceans. Recently, environmental and genomic data based on analysis of the pufM gene identified the existence of α-proteobacteria as well as possible γ-like proteobacteria among AAnP in the Pacific Ocean. Here we report on analyses of environmental samples from the Red and Mediterranean Seas by using pufM as well as the bchX and bchL genes as molecular markers. The majority of photosynthesis genes retrieved from these seas were related to Roseobacter-like AAnP sequences. Furthermore, the sequence of a novel photosynthetic operon organization from an uncultured Roseobacter-like bacterial artificial chromosome retrieved from the Red Sea is described. The data show the presence of Roseobacter-like bacteria in Red and Mediterranean Sea AAnP populations in the seasons analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号