首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   39篇
  2019年   3篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   16篇
  2014年   20篇
  2013年   30篇
  2012年   33篇
  2011年   27篇
  2010年   21篇
  2009年   21篇
  2008年   20篇
  2007年   23篇
  2006年   25篇
  2005年   15篇
  2004年   26篇
  2003年   19篇
  2002年   14篇
  2001年   13篇
  2000年   14篇
  1999年   15篇
  1998年   10篇
  1997年   11篇
  1996年   4篇
  1995年   9篇
  1994年   6篇
  1993年   3篇
  1992年   11篇
  1991年   13篇
  1990年   14篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1975年   4篇
  1974年   12篇
  1972年   6篇
  1971年   4篇
  1968年   2篇
  1967年   2篇
  1966年   6篇
  1960年   2篇
排序方式: 共有577条查询结果,搜索用时 31 毫秒
1.
FtsZ assembly at the midcell division site in the form of a Z-ring is crucial for initiation of the cell division process in eubacteria. It is largely unknown how this process is regulated in the human pathogen Mycobacterium tuberculosis. Here we show that the expression of clpX was upregulated upon macrophage infection and exposure to cephalexin antibiotic, the conditions where FtsZ-ring assembly is delayed. Independently, we show using pull-down, solid-phase binding, bacterial two-hybrid and mycobacterial protein fragment complementation assays, that M. tuberculosis FtsZ interacts with ClpX, the substrate recognition domain of the ClpXP protease. Incubation of FtsZ with ClpX increased the critical concentration of GTP-dependent polymerization of FtsZ. Immunoblotting revealed that the intracellular ratio of ClpX to FtsZ in wild type M. tuberculosis is approximately 1∶2. Overproduction of ClpX increased cell length and modulated the localization of FtsZ at midcell sites; however, intracellular FtsZ levels were unaffected. A ClpX-CFP fusion protein localized to the cell poles and midcell sites and colocalized with the FtsZ-YFP protein. ClpX also interacted with FtsZ mutant proteins defective for binding to and hydrolyzing GTP and possibly for interactions with other proteins. Taken together, our results suggest that M. tuberculosis ClpX interacts stoichiometrically with FtsZ protomers, independent of its nucleotide-bound state and negatively regulates FtsZ activities, hence cell division.  相似文献   
2.
3.
Coral reefs are generally considered to be the most biologically productive of all marine ecosystems, but in recent times these vulnerable aquatic resources have been subject to unusual degradation. The general decline in reefs has been greatly accelerated by mass bleaching in which corals whiten en masse and often fail to recover. Empirical evidence indicates a coral reef bleaching cycle in which major bleaching episodes are synchronized with El Niño events that occur every 3–4 years on average. By heating vast areas of the Pacific Ocean, and affecting the Indian and Atlantic Oceans as well, El Niño causes widespread damage to reefs largely because corals are very sensitive to temperature changes. However, mass bleaching events were rarely observed before the 1970s and their abrupt appearance two decades ago remains an enigma. Here we propose a new explanation for the sudden occurrence of mass bleaching and show that it may be a response to the relative increase in El Niño experienced over the last two decades.  相似文献   
4.
A molybdopterin-free form of xanthine oxidase   总被引:1,自引:0,他引:1  
A previously unidentified fraction lacking xanthine:O2 activity has been isolated during affinity chromatography of bovine milk xanthine oxidase preparations on Sepharose 4B/folate gel. Unlike active, desulfo, or demolybdo forms of xanthine oxidase, this form, which typically comprises about 5% of an unfractionated enzyme solution, passes through the affinity column without binding to it, and is thus easily separated from the other species. The absorption spectrum of this fraction is very similar to that of the active form, but has a 7% lower extinction at 450 nm. Analysis of the fraction has shown that it is a dimer of normal size, but that it does not contain molybdenum or molybdopterin (MPT). The "MPT-free" xanthine oxidase contains 90-96% of the Fe found in active xanthine oxidase, and 100% of the expected sulfide. EPR and absorption difference spectroscopy indicate that the MPT-free fraction is missing approximately half of its Fe/S I centers. The presence of a new EPR signal suggests that an altered Fe/S center may account for the nearly normal Fe and sulfide content. Microwave power saturation parameters for the Fe/S II and Fe/S I centers in the MPT-free fraction are normal, with P1/2 equal to 1000 and 60 mW, respectively. The new EPR signal shows intermediate saturation behavior with a P1/2 = 200 mW. The circular dichroism spectrum of the MPT-free fraction shows distinct differences from that of active enzyme. The NADH:methylene blue activity of the MPT-free fraction is the same as that of active xanthine oxidase which exhibits xanthine:O2 activity, but NADH:cytochrome c and NADH:DCIP activities are diminished by 54 and 37%, respectively.  相似文献   
5.
Distamycin and netropsin are two oligopeptides which bind to DNA in a nonintercalative manner. Analogues of distamycin have been synthesized and their binding with poly d(A-T) studied using ultraviolet absorption spectroscopy. Preliminary biological activity tests on a gram positive bacteria using these analogues have also been carried out Based on the lecture given by Dr. V. Sasisekharan at the Royal Society of Chemistry (Deccan Section) Bangalore, 26 June 1984.  相似文献   
6.
We have investigated the mechanism of activation of an inactive but functionally intact hamster thymidine kinase (TK) gene by the chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine. Following carcinogen treatment of TK- RJK92 Chinese hamster cells, aminopterin-resistant (HATr) colonies appeared at a frequency 50-fold higher than in untreated controls. More than 80% of these HATr variants expressed TK enzymatic activity and were divided into high- and low-activity classes. In all TK+ variants, TK expression was correlated with demethylation in the 5' region of the TK gene and the appearance a 1,400-nucleotide TK mRNA. Using high-performance liquid chromatography to measure the level of genomic methylation, we found that four of five high-activity lines demonstrated extensive genomic hypomethylation (approximately 25% of normal level) that was associated with demethylation of all TK gene copies. Restriction endonuclease analysis of 15 low-activity lines revealed four instances of sequence alterations in the far-5' region of the TK gene and one instance of a tandem low-copy amplification. In these lines, the structurally altered gene copy was demethylated. Thus, we propose that a chemical carcinogen can activate TK expression by several different mechanisms. Focal demethylation with or without gene rearrangement was associated with low TK activity, whereas demethylation throughout the genome was associated with high TK activity.  相似文献   
7.
8.
Exogenously supplied catalase, a peroxisomal enzyme, has been found to be of therapeutic value in ischemic injury. Therefore, we examined the effect of ischemic-reperfusion injury on the structure and function of kidney peroxisomes. Ischemic injury changed the density of peroxisomes from 1.21 g/cm3 (peak I) to a lighter density of 1.14 g/cm3 (peak II). The number of peroxisomes moving from the normal density population (peak I) to a lower density population (peak II) increased with an increase in ischemic injury. Latency experiments indicated both populations of peroxisomes to be of intact peroxisomes. Immunoblot analysis with antibodies against peroxisomal matrix and membrane proteins demonstrated that after 90 min of ischemia a significant number of matrix proteins were lost in the peak II population, suggesting that functions of these peroxisomes may be severally affected. Reperfusion following ischemic injury resulted in loss of peroxisomal matrix proteins in both peaks I and II, suggesting that peroxisomal functions may be drastically compromised. This change in peroxisomal functions is reflected by a significant decrease in peroxisomal catalase activity (35%) and beta-oxidation of lignoceric acid (43%) observed following 90 min of ischemia. The decrease in catalase activity was more pronounced in reperfused kidneys even after a shorter term of ischemic injury. Reperfusion restored the normal peroxisomal beta-oxidation in kidneys exposed up to 60 min of ischemia. However, 90 min of ischemia was irreversible as there was a further decrease in beta-oxidation upon reperfusion. The decrease in catalase activity during ischemia alone was due to the formation of an inactive complex, whereas during reperfusion, following 90 min of ischemia, inactivation and proteolysis or decreased synthesis of catalase contributed equally toward the injury. The observed changes in the structure and function of peroxisomes as a result of ischemic-reperfusion injury and the ubiquitous distribution of peroxisomes underlines the importance of this organelle in the pathophysiology of vascular injury in general.  相似文献   
9.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   
10.
Summary The recovery and concentration of diacetyl from aqueous solutions by pervaporation was studied with a PDMS-PC membrane at 33°C. Flux decreased with partial pressure and increased with temperature and concentration of diacetyl. Selectivity values greater than 30 were obtained. Whey permeate components had no effect on pervaporation parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号