首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1641篇
  免费   69篇
  国内免费   1篇
  2023年   15篇
  2022年   14篇
  2021年   40篇
  2020年   32篇
  2019年   35篇
  2018年   53篇
  2017年   34篇
  2016年   78篇
  2015年   78篇
  2014年   101篇
  2013年   137篇
  2012年   178篇
  2011年   162篇
  2010年   80篇
  2009年   93篇
  2008年   98篇
  2007年   97篇
  2006年   92篇
  2005年   67篇
  2004年   68篇
  2003年   52篇
  2002年   33篇
  2001年   12篇
  2000年   9篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1711条查询结果,搜索用时 15 毫秒
1.
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.  相似文献   
2.

Background

Coronary Artery Disease (CAD) is clearly a multifactorial disease that develops from childhood and ultimately leads to death. Several reports revealed having a First Degree Relatives (FDRS) with premature CAD is a significant autonomous risk factor for CAD development. C - reactive protein (CRP) is a member of the pentraxin family and is the most widely studied proinflammatory biomarker. IL-18 is a pleiotrophic and proinflammatory cytokine which is produced mainly by macrophages and plays an important role in the inflammatory cascade.

Methods and Results

Hs-CRP levels were estimated by ELISA and Genotyping of IL-18 gene variant located on promoter -137 (G/C) by Allele specific PCR in blood samples of 300 CAD patients and 300 controls and 100 FDRS. Promoter Binding sites and Protein interacting partners were identified by Alibaba 2.1 and Genemania online tools respectively. Hs-CRP levels were significantly high in CAD patients followed by FDRS when compared to controls. In IL-18 -137 (G/C) polymorphism homozygous GG is significantly associated with occurrence of CAD and Hs-CRP levels were significantly higher in GG genotype subjects when compared to GC and CC. IL-18 was found to be interacting with 100 protein interactants.

Conclusion

Our results indicate that Hs-CRP levels and IL-18-137(G/C) polymorphism may help to identify risk of future events of CAD in asymptomatic healthy FDRS.  相似文献   
3.
4.
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder, for which people above the age of 60 show an increased risk. Although there has been great advancement in understanding the disease-related abnormalities in brain circuitry and development of symptomatic treatments, a cure for PD remains elusive. The discovery of PD associated gene mutations and environmental toxins have yielded animal models of the disease. These models could recapitulate several key aspects of PD, and provide more insights into the disease pathogenesis. They have also revealed novel aspects of the disease mechanism including noncell autonomous events and spreading of pathogenic protein species across the brain. Nevertheless, none of these models so far can comprehensively represent all aspects of the human disease. While the field is still searching for the perfect model system, recent developments in stem cell biology have provided a new dimension to modelling PD, especially doing it in a patient-specific manner. In the current review, we attempt to summarize the key findings in the areas discussed above, and highlight how the core PD pathology distinguishes itself from other neurodegenerative disorders while also resembling them in many aspects.  相似文献   
5.
6.

Key message

Here we uncover the major evolutionary events shaping the evolution of the GID1 family of gibberellin receptors in land plants at the sequence, structure and gene expression levels.

Abstract

Gibberellic acid (gibberellin, GA) controls key developmental processes in the life cycle of land plants. By interacting with the GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor, GA regulates the expression of a wide range of genes through different pathways. Here we report the systematic identification and classification of GID1s in 54 plants genomes, encompassing from bryophytes and lycophytes, to several monocots and eudicots. We investigated the evolutionary relationship of GID1s using a comparative genomics framework and found strong support for a previously proposed phylogenetic classification of this family in land plants. We identified lineage-specific expansions of particular subfamilies (i.e. GID1ac and GID1b) in different eudicot lineages (e.g. GID1b in legumes). Further, we found both, shared and divergent structural features between GID1ac and GID1b subgroups in eudicots that provide mechanistic insights on their functions. Gene expression data from several species show that at least one GID1 gene is expressed in every sampled tissue, with a strong bias of GID1b expression towards underground tissues and dry legume seeds (which typically have low GA levels). Taken together, our results indicate that GID1ac retained canonical GA signaling roles, whereas GID1b specialized in conditions of low GA concentrations. We propose that this functional specialization occurred initially at the gene expression level and was later fine-tuned by mutations that conferred greater GA affinity to GID1b, including a Phe residue in the GA-binding pocket. Finally, we discuss the importance of our findings to understand the diversification of GA perception mechanisms in land plants.
  相似文献   
7.
Femtosecond transient absorption was used to study excitation decay in monomeric and trimeric cyanobacterial Photosystem I (PSI) being prepared in three states: (1) in aqueous solution, (2) deposited and dried on glass surface (either conducting or non-conducting), and (3) deposited on glass (conducting) surface but being in contact with aqueous solvent. The main goal of this contribution was to determine the reason of the acceleration of the excitation decay in dried PSI deposited on the conducting surface relative to PSI in solution observed previously using time-resolved fluorescence (Szewczyk et al., Photysnth Res 132(2):111–126, 2017). We formulated two alternative working hypotheses: (1) the acceleration results from electron injection from PSI to the conducting surface; (2) the acceleration is caused by dehydration and/or crowding of PSI proteins deposited on the glass substrate. Excitation dynamics of PSI in all three types of samples can be described by three main components of subpicosecond, 3–5, and 20–26 ps lifetimes of different relative contributions in solution than in PSI-substrate systems. The presence of similar kinetic components for all the samples indicates intactness of PSI proteins after their deposition onto the substrates. The kinetic traces for all systems with PSI deposited on substrates are almost identical and they decay significantly faster than the kinetic traces of PSI in solution. We conclude that the accelerated excitation decay in PSI-substrate systems is caused mostly by dense packing of proteins.  相似文献   
8.
9.
There is an urgent need to develop a better method of contraception which is non‐steroidal and reversible to control world population explosion and unintended pregnancies. Contraceptive vaccines (CV), especially targeting sperm‐specific proteins, can provide an ideal contraceptive modality. Sperm‐specific proteins can induce an immune response in women as well as men, thus can be used for CV development in both sexes. In this article, we will review two sperm‐specific proteins, namely Izumo protein and YLP12 dodecamer peptide. Gene‐knockout studies indicate that Izumo protein is essential for sperm–egg membrane fusion. Vaccination with Izumo protein or its cDNA causes a significant reduction in fertility of female mice. The antibodies to human Izumo inhibit human sperm penetration assay. Recently, our laboratory found that a significant percentage of infertile women have antibodies to Izumo protein. The second sperm‐specific protein is YLP12, a peptide mimetic sequence present on human sperm involved in recognition and binding to the human oocyte zona pellucida. Vaccination with YLP12 or its cDNA causes long‐term, reversible contraception, without side effects, in female mice. Infertile, but not fertile, men and women have antibodies to YLP12 peptide. Our laboratory has isolated, cloned, and sequenced cDNA encoding human single chain variable fragment (scFv) antibody from infertile men which reacts with YLP12 peptide. The human YLP12 scFv antibody may provide a novel passive immunocontraceptive, the first of its kind. In conclusion, sperm‐specific Izumo protein and YLP12 peptide can provide exciting candidates for antisperm CV development.  相似文献   
10.
α-Amylase was extracted and purified from soybean seeds to apparent homogeneity by affinity precipitation. The homogeneous enzyme preparation was immobilized on gelatin matrix using glutaraldehyde as an organic hardener. Response surface methodology (RSM) and 3-level-3-factor Box–Behnken design was employed to evaluate the effects of immobilization parameters, such as gelatin concentration, glutaraldehyde concentration and hardening time on the activity of immobilized α-amylase. The results showed that 20% gelatin (w/v), 10% glutaraldehyde (v/v) and 1 h hardening time yielded an optimum immobilization of 82.5%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号