首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  2010年   2篇
  2009年   8篇
  2008年   1篇
  2007年   9篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1992年   1篇
  1978年   1篇
排序方式: 共有40条查询结果,搜索用时 312 毫秒
1.
Climate warming is discussed as a factor that can favour the success of invasive species. In the present study, we analysed potential fitness gains of moderate warming (3 °C above field temperature) on the invasive clam Corbicula fluminea during summer and winter. The experiments were conducted under seminatural conditions in a bypass-system of a large river (Rhine, Germany). We showed that warming in late summer results in a significant decrease in the clams' growth rates (body mass and shell length increase) and an increase in mortality rate. The addition of planktonic food dampens the negative effect of warming on the growth rates. This suggests that the reason for the negative growth effect of temperature increase in late summer is a negative energetic balance caused by an enhanced metabolic rate at limited food levels. Warming during early summer revealed contrasting effects with respect of body mass (no warming effect) and shell length (increased shell growth with warming). This differential control of both parameters further enhances the loss of the relative (size-specific) body mass with warming. In contrast, warming in winter had a consistently positive effect on the clams' growth rate as demonstrated in two independent experiments. Furthermore, the reproduction success (as measured by the average number of larvae per clam) during the main breeding period (April) was strongly enhanced by experimental warming during winter, i.e. by eight times during the relatively cold winter 2005/2006 and by 2.6 times during the relatively warm winter 2007/2008. This strong, positive effect of moderate winter warming on the clams' fitness is probably one reason for the recent invasion success of C. fluminea in the northern hemisphere. However, warm summer events might counteract the positive winter warming effect, which could balance out the fitness gains.  相似文献   
2.
3.
Phylogenetic relationships of 18 Thlaspi s.l. species were inferred from nuclear ribosomal internal transcribed spacer (ITS) sequence data. These species represent all sections of the basic classification system of Schulz primarily based on fruit characters. The molecular phylogeny supported six clades that are largely congruent with species groups recognized by Meyer on the basis of differences in seed coat anatomy, i.e. Thlaspi s. s., Thlaspkeras, Moccaea {Raparia included), Microthhspi, Vania and Neurotropy. Some of these lineages include species which are morphologically diverse in fruit shape (e.g. Thlaspi s. s.: T. arvense - fruits broadly winged, T. ceratocarpum - fruits with prominent horns at apex, T. alliaceum - fruits very narrowly winged). Furthermore, the same fruit shape type is distributed among different clades. For instance, fruits with prominent horns at apex are found in Thlaspi s. s. ( T. ceratocarpum) and Thlaspiceras (T oxyceras). These results clearly indicate convergence in fruit characters previously used for sectional classification in Thlaspi s. l.  相似文献   
4.
Abstract.  1. In several dry inner Alpine valleys higher mortality levels of pine have been observed in recent years. This paper evaluates the role of xylophagous insects in the current pine decline and the influence of climate change on the infestation dynamics.
2. More than 200 trees of different levels of crown transparency (needle loss) were felled between 2001 and 2005 and sections of them incubated in insect emergence traps. Colonisation densities were related to the transparency level of each host tree at the time of attack.
3. Trees with more than 80% needle loss were colonised most frequently, but the breeding density was highest in trees with 65–80% needle loss.
4. The scolytine Ips acuminatus and the buprestid Phaenops cyanea colonised trees with 30–90% needle loss in high densities. The bark beetle Tomicus minor was less aggressive, preferring trees with 60–85% needle loss. The hymenopteran Sirex noctilio and the cerambycid Acanthocinus aedilis were restricted to greatly weakened trees with 50–85% needle loss. Most species colonised trees that had experienced a decline in vigour, that is an increase in crown transparency shortly before attack.
5. The infestation dynamics of P. cyanea covaried with the drought index as well as with temperature.
6. Increased temperatures not only trigger a drought stress rendering the host trees susceptible to insect attack, but also accelerate insect development. As more frequent drought periods are likely as a result of climate change, even trees only slightly or temporarily weakened will be more subject to attack by aggressive species such as I. acuminatus and P. cyanea .  相似文献   
5.
The eresid spider genus Eresus is morphologically and ecologically conservative. At least three species occur in Europe. However, deep genetic divergence among geographical samples within two species, E. cinnaberinus and E. sandaliatus , may suggest more cryptic species. In the present study we investigate the genetic cohesion of the third species, Eresus walckenaeri , throughout its eastern Mediterranean distribution range, relative to the E. cinnaberinus–E. sandaliatus species complex. Eresus walckenaeri specimens were monophyletic. Genetic discreteness of E. walckenaeri in a region of sympatry with its sister species in Greece provides evidence for species integrity of E. walckenaeri within the European Eresus species complex. Eresus walckenaeri exhibited high concordance between geographical location and mtDNA genealogy. Two major phylogeographical clades were found in the Greek–Turkish and Syrian–Israel parts of the investigated area, respectively (∼6.5% sequence divergence). Concordance between geography and genetic divergence was further observed between Aegean island samples and their corresponding Greek and Turkish mainland samples, suggesting regional subdivision with gradual but potentially high dispersal propensity. Monophyly and limited regional distribution indicate Mediterranean endemic origin.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 1–9.  相似文献   
6.
Permafrost environments within the Siberian Arctic are natural sources of the climate relevant trace gas methane. In order to improve our understanding of the present and future carbon dynamics in high latitudes, we studied the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community in permafrost deposits. For these investigations a permafrost core of Holocene age was drilled in the Lena Delta (72°22′N, 126°28′E). The organic carbon of the permafrost sediments varied between 0.6% and 4.9% and was characterized by an increasing humification index with permafrost depth. A high CH4 concentration was found in the upper 4 m of the deposits, which correlates well with the methanogenic activity and archaeal biomass (expressed as PLEL concentration). Even the incubation of core material at −3 and −6°C with and without substrates showed a significant CH4 production (range: 0.04–0.78 nmol CH4 h−1 g−1). The results indicated that the methane in Holocene permafrost deposits of the Lena Delta originated from modern methanogenesis by cold‐adapted methanogenic archaea. Microbial generated methane in permafrost sediments is so far an underestimated factor for the future climate development.  相似文献   
7.
While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially increased frequency of freeze–thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R2-values ranging from 0.81 to 0.85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold-season photosynthesis partly balanced the cold-season respiratory carbon losses and can be significant for the annual cycle of carbon. Still, during the full year the ecosystem was a significant net source of 120 ± 12 g C m−2 to the atmosphere. Neither respiration nor photosynthetic rates were much affected by the extra FT cycles, although the mean rate of net ecosystem loss decreased slightly, but significantly, in May. The results suggest only a small response of net carbon fluxes to increased frequency of FT cycles in this ecosystem.  相似文献   
8.
The Mediterranean orchid Anacamptis papilionacea , despite showing a typical food-deceptive floral display, has also been reported to frequently attract male pollinators, suggesting a potentiality for sexual attraction. In a survey from a southern Italian population of A. papilionacea and their hybrids with Anacamptis morio , we collected 37 pollinators belonging to five bee species carrying 126 orchid pollinia. The main pollinator of A. papilionacea was Anthophora crinipes male (48.6%), but the number of females was not negligible (22.9%). We also found pollinator sharing between the hybrid and the parental species. Our findings confirm that, contrary to other food-deceptive species, A. papilionacea mainly attracts male insects, but also that, in contrast to sexually deceptive species, this attraction is not specific. We suggest that A. papilionacea adopts a complex mix of food and sexually deceptive pollination and could represent a helpful model for studying the transition between different pollination strategies.  相似文献   
9.
In four species of salt-tolerant eucalypts (Eucalyptus raveretiana, E. spathulata, E. sargentii and E. loxophleba), we found substantial concentrations of quercitol – a cyclitol known for its accumulation in seeds of Quercus. Quercitol was absent in old foliage of E. globulus, a species noted for greater susceptibility to salinity, and also absent in the moderately tolerant E. camaldulensis, but, relative to other species, both had higher foliar concentrations of inositol. Simple sugars and cyclitols accumulated to osmotically significant concentrations in all species. The osmotic potential of expressed sap was always less than that of the external ‘soil’ solution and increasing salinity produced predictable reductions in growth and increases in ion concentrations in foliage of saplings of four eucalypt species. The more salt-tolerant species, E. spathulata, E. loxophleba and E. sargentii, were able to maintain well-regulated leaf Na+ concentrations even at 300 mol m−3 NaCl. These more salt-tolerant species also showed an apparent increase in net selectivity for K+ over Na+ as salinity increased, irrespective of the Na+ : Ca2+ ratio of the external medium (range 25 : 1 to 75 : 1; Ca2+ always ≥ 4.0 mol m−3). By contrast, E. globulus was unable to exclude Na+ when exposed to higher NaCl concentrations (e.g. 200 and 300 mol m−3). Carbon isotope signatures of foliage reflected imposed salinity but were not strongly enough correlated with growth to support previous suggestions that isotope discrimination be a means of evaluating salt tolerance. On the other hand, patterns of sugar and cyclitol accumulation should be further explored in eucalypts as traits contributing to salt tolerance, and with potential use as markers in breeding programmes.  相似文献   
10.
The skull of the mixosaurid species Contectopalatus atavus (Quenstedt, 1851-52) is the most bizarre of any known ichthyosaur. It possesses a very high sagittal crest formed by the nasal, frontal and parietal bones which grows higher during ontogeny. This skull structure - found to a lesser extent in the other mixosaurid genera Mixosaurus and Phalarodon - is a synapomorphy of the family Mixosauridae. It is here interpreted as correlated with a unique arrangement of the jaw adductor musculature among tetrapods, with the internal jaw adductors extending over most of the skull roof up to the external narial opening. This reconstruction would increase the biting force considerably and the hypothesis is supported by peculiarities of the dentition and jaws of Contectopalatus. Contectopalatus probably reached a length of about 5 meters. It is therefore the largest known mixosaurid and one of the largest Triassic ichthyosaurs. The general text-book picture of mixosaurs as small, rather unspecialized, primitive ichthyosaurs is incorrect. Mixosaurs were a highly specialized, uniquely adapted and very diverse ichthyosaur family, some members of which rank among the marine top predators of their time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号