首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1910篇
  免费   97篇
  国内免费   8篇
  2023年   35篇
  2022年   25篇
  2021年   65篇
  2020年   46篇
  2019年   55篇
  2018年   68篇
  2017年   65篇
  2016年   73篇
  2015年   106篇
  2014年   100篇
  2013年   138篇
  2012年   171篇
  2011年   176篇
  2010年   83篇
  2009年   90篇
  2008年   95篇
  2007年   96篇
  2006年   68篇
  2005年   63篇
  2004年   33篇
  2003年   36篇
  2002年   39篇
  2001年   23篇
  2000年   29篇
  1999年   24篇
  1998年   14篇
  1997年   8篇
  1996年   4篇
  1995年   14篇
  1994年   8篇
  1993年   4篇
  1992年   9篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   8篇
  1987年   9篇
  1986年   11篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1980年   4篇
  1979年   10篇
  1978年   10篇
  1977年   8篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
  1972年   3篇
排序方式: 共有2015条查询结果,搜索用时 46 毫秒
1.
Both G-quadruplex and Z-DNA can be formed in G-rich and repetitive sequences on genome, and their formation and biological functions are controlled by specific proteins. Z-DNA binding proteins, such as human ADAR1, have a highly conserved Z-DNA binding domain having selective affinity to Z-DNA. Here, our study identifies the Z-DNA binding domain of human ADAR1 (hZαADAR1) as a novel G-quadruplex binding protein that recognizes c-myc promoter G-quadruplex formed in NHEIII1 region and represses the gene expression. An electrophoretic migration shift assay shows the binding of hZαADAR1 to the intramolecular c-myc promoter G-quadruplex-forming DNA oligomer. To corroborate the binding of hZαADAR1 to the G-quadruplex, we conducted CD and NMR chemical shift perturbation analyses. CD results indicate that hZαADAR1 stabilizes the parallel-stranded conformation of the c-myc G-quadruplex. The NMR chemical shift perturbation data reveal that the G-quadruplex binding region in hZαADAR1 was almost identical with the Z-DNA binding region. Finally, promoter assay and Western blot analysis show that hZαADAR1 suppresses the c-myc expression promoted by NHEIII1 region containing the G-quadruplex-forming sequence. This finding suggests a novel function of Z-DNA binding protein as a regulator of G-quadruplex-mediated gene expression.  相似文献   
2.
The DNA damage induced in a human breast cancer cell line treated with 1,5 (10)-estradiene-3,4,17-trione (3,4-estrone-o-quinone; 3,4-EQ) has been measured qualitatively and quantitatively. Single-strand (ss) but not double-strand (ds) DNA breaks were formed in MCF-7 cells treated with 3,4-EQ. The ss DNA breaks formed in MCF-7 cells were partially repaired after incubation of cells in 3,4-EQ-free media for 2 and 4 h (i.e. 33 and 23% repair, respectively, as compared to the ss DNA breaks in cells after a 1-h exposure to 3,4-EQ without a recovery period). The formation of interstrand DNA cross-links was demonstrated in MCF-7 cells exposed to the bifunctional alkylating agent, mitomycin C, but not in those exposed to 3,4-EQ. Protein-linked DNA breaks were detected in MCF-7 cells after exposure to camptothecin and etoposide but not 3,4-EQ, suggesting that the ss DNA breaks induced by 3,4-EQ are unlikely to be mediated via topoisomerases. The induction of ss DNA breaks was detected in the estrogen receptor-negative cell line, BT-20, after exposure to 3,4-EQ. Furthermore, excess estradiol in culture media did not prevent 3,4-EQ-induced ss DNA breaks, suggesting that the DNA damage was not mediated via the estrogen receptor. Evaluation of the newly synthesized quinone analogue, 5,6,7,8-tetrahydro-1-2-naphthoquinone, in the ss DNA breakage assay revealed that the A and B ring moiety of 3,4-EQ is sufficient to produce ss DNA breaks in MCF-7 cells.  相似文献   
3.
4.
Aim Deep‐sea hydrothermal vents have now been reported along all active mid‐ocean ridges and back‐arc basins, but the boundaries of biogeographic entities remain questionable owing to methodological issues. Here we examine biogeographic patterns of the vent fauna along the East Pacific Rise (EPR) and determine the relative roles of regional and local factors on the distribution of biodiversity associated with mussel beds along a poorly explored zone, the southern EPR (SEPR). Location East Pacific Rise. Methods A species list of macrobenthic invertebrates along the EPR was compiled from the literature and supplemented with data recovered during the French research cruise BIOSPEEDO carried out in 2004 along the SEPR. Biogeographic patterns were assessed by combining the identification of morphological species with a molecular barcoding approach. A multivariate regression tree (MRT) analysis was performed to identify any geographic breaks, and an empirical distribution of species richness was compared with predictions provided by a mid‐domain effect model. Macrofaunal community structure associated with mussel beds along the SEPR was analysed in relation to environmental factors using cluster and canonical redundancy analyses. Results Sequencing of the cytochrome c oxidase subunit I gene revealed the occurrence of several cryptic species complexes along the EPR, with the equator separating the southern and northern clades. Furthermore, during the BIOSPEEDO cruise at least 10 still unnamed species were collected between 7°25′ S and 21°33′ S. The shift in community structure identified by MRT analysis was located south of 17°34′ S or south of 13°59′ S, depending on the data used, suggesting that the southern part of the SEPR (17°25′–21°33′ S) constitutes a biogeographic transition zone in the vent fauna along the EPR. At a regional scale, latitude combined with the type of venting was significantly correlated with the community structure associated with mussel beds. Main conclusions Together, the molecular data, in situ observations, and the distribution of species suggest that the high diversity of vent fauna species presently observed between 17°25′ S and 21°33′ S is probably a result of the overlap of several distinct biogeographic provinces. We argue that this area thus constitutes a biogeographic vent fauna transition zone along the EPR.  相似文献   
5.
14C-labelled polar lipids (monogalactosyl-diacylglycerol [MGDG], digalactosyl-diacylglycerol [DGDG], phosphatidylcholine [PC] and phosphatidylglycerol [PG]), purified from Vigna unguiculata leaves, were used as substrates to study the lipolytic activities of Vigna unguiculata leaf extracts. Analysis of the radioactive degradation products revealed the presence of at least three enzyme activities contributing to the hydrolysis of the four main leaf membrane lipids: Lipolytic acyl hydrolase (LAH) activities responsible for the deacylation of galactolipids and phospholipids, phospholipase D (PLD, EC 3.1.4.4) activity which gives rise to phosphatidic acid, and as suggested by the presence of diacylglycerols in minor quantities after phospholipid hydrolysis, phosphatidate phosphohydrolase (PAP, EC 3.1.3.4) and/or phospholipase C (PLC, EC 3.1.4.3.) activity. Under the conditions described in the present paper, the presence of phospholipase A (PLA1, EC 3.1.1.3 and PLA2, EC 3.1.1.4) activities remains hypothetical, due to the absence of lysophospholipids. LAH and PLD were partially soluble and partially associated with the membranes. When Vigna unguiculata plants were submitted to drought, the enzymatic degradation of galactolipids and phospholipids increased. The stimulation of lipolytic activities was greater in the drought-sensitive cultivar of Vigna unguiculata (cv. 1183) than in the drought-tolerant (cv. EPACE-1) one. In cv. 1183, MGDG- and DGDG-LAH activities in the membrane fractions were dramatically stimulated at a rather moderate water deficit (?0.75 MPa). A sharp increase in membrane phospholipolytic activities was also observed at mild drought stress (?1.2 MPa). In contrast, in cv. EPACE-1, the stimulation of lipolytic activities was less drastic and occurred at lower leaf water potentials (below ?1.2 MPa for galactolipases, and below ?1.4 MPa for phospholipases). Our results confirm the presence in leaves of higher plants of a very active LAH acting on galactolipids, whereas PLD is the main enzyme responsible for the degradation of phospholipids, particularly when plants are submitted to drought stress. The differences in stimulation of lipolytic activities between the two Vigna cultivars was in accordance with the different levels of membrane lipid degradation shown previously and could explain their different capacity to sustain drought.  相似文献   
6.
7.
The effects of an increase in intracellular cAMP concentration on proteoglycan (PG) synthesis by peritubular (PT) cells from immature rat testis were investigated. In the presence of dBcAMP for 72 h, the [3H]-hexosamine incorporation in secreted PG and in cellassociated PG was reduced, whereas [35S]-sulfate radioactivity was enhanced in secreted PG and not affected in cell-associated PG. Cholera toxin and IBMX, known to generate high intracellular cAMP levels, induced similar changes. Cyclic AMP did not alter PG protein moiety synthesis but enhanced PG turnover. Cholera toxin and dBcAMP profoundly modified PG characteristics: (1) Apparent molecular weight of PG was increased. (2) This was due to an increase in glycosaminoglycans (heparan sulfate (HS) and chondroitin sulfate (CS)) length. (3) The number of glycosaminoglycan chains was presumably reduced. (4) Heparan sulfate and chondroitin sulfate chains of medium and cell layer-associated PG appeared oversulfated. (5) The pattern of cell layer associated PG was modified with a decrease in HSPG and a correlative increase in CSPG. Cholera toxin and dBcAMP also dramatically stimulated hyaluronan synthesis by possible phosphorylation induced activation of hyaluronan synthase(s).  相似文献   
8.
9.
ZFP36 constitutes a small family of RNA binding proteins (formerly known as the TIS11 family) that target mRNA and promote their degradation. In mammals, ZFP36 proteins are encoded by four genes and, although they show similar activities in a cellular RNA destabilization assay, there is still a limited knowledge of their mRNA targets and it is not known whether or not they have redundant functions. In the present work, we have used the Xenopus embryo, a model system allowing gain- and loss-of-function studies, to investigate, whether individual ZFP36 proteins had distinct or redundant functions. We show that overexpression of individual amphibian zfp36 proteins leads to embryos having the same defects, with alteration in somites segmentation and pronephros formation. In these embryos, members of the Notch signalling pathway such as hairy2a or esr5 mRNA are down-regulated, suggesting common targets for the different proteins. We also show that mouse Zfp36 protein overexpression gives the same phenotype, indicating an evolutionary conserved property among ZFP36 vertebrate proteins. Morpholino oligonucleotide-induced loss-of-function leads to defects in pronephros formation, reduction in tubule size and duct coiling alterations for both zfp36 and zfp36l1, indicating no functional redundancy between these two genes. Given the conservation in gene structure and function between the amphibian and mammalian proteins and the conserved mechanisms for pronephros development, our study highlights a potential and hitherto unreported role of ZFP36 gene in kidney morphogenesis.  相似文献   
10.
The computational task of protein structure prediction is believed to require exponential time, but previous arguments as to its intractability have taken into account only the size of a protein's conformational space. Such arguments do not rule out the possible existence of an algorithm, more selective than exhaustive search, that is efficient and exact. (An efficient algorithm is one that is guaranteed, for all possible inputs, to run in time bounded by a function polynomial in the problem size. An intractable problem is one for which no efficient algorithm exists.) Questions regarding the possible intractability of problems are often best answered using the theory of NP-completeness. In this treatment we show the NP-hardness of two typical mathematical statements of empirical potential energy function minimization of macromolecules. Unless all NP-complete problems can be solved efficiently, these results imply that a function minimization algorithm can be efficient for protein structure prediction only if it exploits protein-specific properties that prohibit the simple geometric constructions that we use in our proofs. Analysis of further mathematical statements of molecular structure prediction could constitute a systematic methodology for identifying sources of complexity in protein folding, and for guiding development of predictive algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号