首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   15篇
  2022年   1篇
  2021年   13篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   9篇
  2015年   8篇
  2014年   30篇
  2013年   28篇
  2012年   21篇
  2011年   21篇
  2010年   15篇
  2009年   15篇
  2008年   22篇
  2007年   22篇
  2006年   7篇
  2005年   14篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   1篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1966年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
1.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   
2.
Calcineurin was dissociated into subunits A and B by SDS and the dissociated subunits were separated by Sephadex G-100 column chromatography in SDS. The phosphatase activity was associated with the A subunit and was detected only in the presence of MnCl2 of the various divalent cations tested. The Mn2+-dependent phosphatase of A subunit was stimulated (4-5-fold) by calmodulin. The subunit B increased only modestly Mn2+ stimulated phosphatase activity of subunit A but markedly increased it when assay also contained calmodulin. These results support the view that subunit B plays an important role in Mn2+/calmodulin regulation of subunit A phosphatase activity. They also lend further support to our earlier postulate ([1984] FEBS Lett. 169, 251-255) that Mn2+ is a powerful regulator of calcineurin phosphatase.  相似文献   
3.
Phosphoenolpyruvate-dependent protein kinase activity has been demonstrated in the soluble fraction of rat skeletal muscle. The reaction was not due to the formation of ATP in the incubation mixture. Cyclic AMP, calcium, ATP and a number of phosphate acceptor proteins did not stimulate the reaction. One 32P-labelled protein (Mr 25000) was observed on SDS gels. The phosphorylated protein contained acid stable phosphoserine as a major phosphorylated amino acid. The phosphorylation reaction in crude extracts was not directly proportional to the amount of protein, but typical of a two-component system; i.e., kinase and substrate. The chromatography of soluble proteins on Ultrogel AcA44 separated the phosphate acceptor protein(s) from the phosphoenolpyruvate-dependent protein kinase activity.  相似文献   
4.
Somatic embryogenesis and regeneration of plantlets was achieved In callus cultures derived from cotyledonary leaf pieces of Hyoscyamus muticus L on MS medium enriched with 2 mg/l 2,4–0 and 0.5 mg/l BAP. For embryogenesis and organogenesis varying concentrations of NAA with or without BAP were added In the medium. Organogenesis was also achieved when callus was transferred to the hormone free medium.  相似文献   
5.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
6.
The insulin-mimetic action of vanadate is well established but the exact mechanism by which it exerts this effect is still not clearly understood. The role of insulin in the regulation of hepatic glycogen metabolizing and lipogenic enzymes is well known. In our study, we have, therefore, examined the effects of vanadate on these hepatic enzymes using four different models of diabetic and insulin-resistant animals. Vanadate normalized the blood glucose levels in all animal models. In streptozotocin-induced diabetic rats, the amount of liver glycogen and the activities of the active-form of glycogen synthase, both active and inactive-forms of phosphorylase, and lipogenic enzymes like glucose 6-phosphate dehydrogenase and malic enzyme were decreased and vanadate treatment normalized all of these to near normal levels. The other three animal models (db/db mouse, sucrose-fed rats and fa/fa obese Zucker rats) were characterized by hyperinsulinemia, hypertriglyceridemia, increases in activities of lipogenic enzymes, and marginal changes in glycogen metabolizing enzymes. Vanadate treatment brought all of these values towards normal levels. It should be noted that vanadate shows differential effects in the modulation of lipogenic enzymes activities in type I and type II diabetic animals. It increases the activities of lipogenic enzymes in streptozotocin-induced diabetic animals and prevents the elevation of activities of these enzymes in hyperinsulinemic animals. The insulin-stimulated phosphorylation of insulin receptor subunit and its tyrosine kinase activity was increased in streptozotocin-induced diabetic rats after treatment with vanadate. Our results support the view that insulin receptor is one of the sites involved in the insulin-mimetic actions of vanadate.  相似文献   
7.
In vitro clonal propagation of Capparis decidua was achieved using nodal explants from mature trees, and cotyledonary node, cotyledon and hypocotyl explants taken from the seedlings. Explants cultured on MS medium supplemented with BAP showed differentiation of multiple shoots and shoot buds in 4–5 weeks in the primary cultures. The medium with BAP (5 mg/l) was the best for shoot bud proliferation from the nodal as well as seedling explant. Shoot multiplication was best on cotyledonary node. In the nodal explants shoot multiplication was best on medium supplemented with 5 mg/l BAP and after second subculturing further multiplication of shoot buds was highest on the medium containing 3 mg/l BAP. Shoots were separated from mother cultures in each subculturing for rooting. Rooting was best achieved using 1 mg/l IBA in the medium. Rooted plantlets were transferred td earthen pots with garden soil and peat moss mixture.  相似文献   
8.
Summary Intervarietal crosses in watermelon, Citrullus lanatus (Thunb.) Mansf., involving six parents with black (J18-1 and J 75), brown (J56-1 and N.H. Midget), red (Bykovski-199) or light cream (Red Nectar) seed-coat colour were made. Parents, F1, F2 and backcross populations were evaluated for their phenotypic expressions with regard to the seed-coat colours involved. Black colour was monogenically dominant over brown light cream and red colour of seed-coat separately or independently. Red colour was dominant over light cream colour of seed-coat by a single pair of genes. The light cream colour was recessive to the brown seed-coat colour of watermelon where a single pair of genes was involved.  相似文献   
9.
The effect of oral administration of sodium orthovanadate on hepatic malic enzyme (EC 1.1.1.40) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activities was investigated in nondiabetic and diabetic rats. Streptozotocin-induced diabetic rats were characterized by 4.7-fold increase in plasma glucose and 82% decrease in plasma insulin levels. The activities of hepatic malic enzyme and glucose-6-phosphate dehydrogenase were also diminished (P less than 0.001). Vanadate treatment in diabetic rats led to a significant decrease (P less than 0.001) in plasma glucose levels and to the normalization of enzyme activities, but it did not alter plasma insulin levels. In nondiabetic rats vanadate decreased the plasma insulin level by 64% without altering the enzyme activities. Significant correlation was observed between plasma insulin and hepatic lipogenic enzyme activities in untreated and vanadate-treated rats. Vanadate administration caused a shift to left in this correlation suggesting improvement in insulin sensitivity.  相似文献   
10.
The sarcolemmal membrane obtained from rat heart by hypotonic shock-LiBr treatment method was found to incorporate 32P from [γ-32P] ATP in the absence and presence of cyclic AMP and protein kinase. The phosphorylated membrane showed an increase in Ca2+ ATPase and Mg2+ ATPase activities without any changes in Na+K+ ATPase activity. The observed increase in Ca2+Mg2+ ATPase activity was found to be associated with an increase in Vmax value of the reaction whereas Ka value for Ca2+Mg2+ was not altered. These results provide information concerning biochemical mechanism for increased calcium entry due to hormones which are known to elevate cyclic AMP levels in myocardium and produce a positive inotropic effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号