首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   19篇
  2023年   5篇
  2022年   1篇
  2021年   11篇
  2020年   6篇
  2019年   11篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   14篇
  2014年   27篇
  2013年   27篇
  2012年   38篇
  2011年   31篇
  2010年   19篇
  2009年   10篇
  2008年   25篇
  2007年   20篇
  2006年   23篇
  2005年   14篇
  2004年   15篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有378条查询结果,搜索用时 936 毫秒
1.
From the roots of Ferula loscosii the coumarins umbelliprenin, coladin and coladonin and the new natural isovaleryl derivative of the latter have been isolated. A study which confirms the structure of coladonin and its difference from farnesiferol A is also given.  相似文献   
2.
The structure and absolute configuration of desangeloylshairidin, a guaianolide isolated from Guillonea scabra, have been established by X-ray diffraction analysis. No conformational change was observed in its seven-membered ring between the crystal and deuterochloroform solution states.  相似文献   
3.
4.
Neurochemical Research - A selective RXR agonist, bexarotene, has been shown to have anti-inflammatory, anti-nociceptive, and neuroprotective effects in several models of numerous neurological...  相似文献   
5.
The antioxidant role of novel N-substituted indole-2-carboxamides (I2CDs) was investigated for their inhibitory effects on superoxide anion (O2? ) and lipid peroxidation (LP). Among the synthesized I2CDs, 3, 4, 6, 8 and 9 significantly inhibited O2· ? with an inhibition range at 70–98%. Examination of substituent effects on activity showed that both the ortho- and para-positions of the benzamide residue needs to be dichlorinated in order to get a maximum inhibitory effect on superoxide anion. In general, halogenated derivatives were found more active then the non-halogenated ones. However, none of the I2CDs had a significant inhibitory effects on the level of lipid peroxidation; only compounds 7 and 10 moderately decreased LP levels by over 50% at 10? 3 M concentrations.  相似文献   
6.
Oxidative stress has been implicated in the development of many neurodegenerative diseases and also responsible from aging and some cancer types. Indolic compounds are a broad family of substances present in microorganisms, plants and animals. They are mainly related to tryptophan metabolism, and present particular properties that depend on their respective chemical structures. Due to free radical scavenger and antioxidant properties of indolic derivatives such as indolinic nitroxides and melatonin, a series of 2-phenyl indole derivatives were prepared and their in vitro effects on rat liver lipid peroxidation levels, superoxide formation and DPPH stable radical scavenging activities were determined against melatonin, BHT and α-tocopherol. The compounds significantly inhibited (72–98%) lipid peroxidation at 10? 3 M. These values were similar to that observed with BHT (88%). Possible structure–activity relationships of the compounds were discussed.  相似文献   
7.
We exploited the amenability of the fungus Aspergillus nidulans to genetics and live-cell microscopy to investigate autophagy. Upon nitrogen starvation, GFP-Atg8-containing pre-autophagosomal puncta give rise to cup-shaped phagophores and circular (0.9-μm diameter) autophagosomes that disappear in the vicinity of the vacuoles after their shape becomes irregular and their GFP-Atg8 fluorescence decays. This ‘autophagosome cycle’ gives rise to characteristic cone-shaped traces in kymographs. Autophagy does not require endosome maturation or ESCRTs, as autophagosomes fuse with vacuoles directly in a RabS (homolog of Saccharomyces cerevisiae Ypt7 and mammalian RAB7; written hereafter as RabSRAB7)-HOPS-(homotypic fusion and vacuole protein sorting complex)-dependent manner. However, by removing RabSRAB7 or Vps41 (a component of the HOPS complex), we show that autophagosomes may still fuse, albeit inefficiently, with the endovacuolar system in a process almost certainly mediated by RabARAB5/RabBRAB5 (yeast Vps21 homologs)-CORVET (class C core vacuole/endosome tethering complex), because acute inactivation of HbrA/Vps33, a key component of HOPS and CORVET, completely precludes access of GFP-Atg8 to vacuoles without affecting autophagosome biogenesis. Using a FYVE2-GFP probe and endosomal PtdIns3P-depleted cells, we imaged PtdIns3P on autophagic membranes. PtdIns3P present on autophagosomes decays at late stages of the cycle, preceding fusion with the vacuole. Autophagy does not require Golgi traffic, but it is crucially dependent on RabORAB1. TRAPPIII-specific factor AN7311 (yeast Trs85) localizes to the phagophore assembly site (PAS) and RabORAB1 localizes to phagophores and autophagosomes. The Golgi and autophagy roles of RabORAB1 are dissociable by mutation: rabOA136D hyphae show relatively normal secretion at 28°C but are completely blocked in autophagy. This finding and the lack of Golgi traffic involvement pointed to the ER as one potential source of membranes for autophagy. In agreement, autophagosomes form in close association with ring-shaped omegasome-like ER structures resembling those described in mammalian cells.  相似文献   
8.
Fibroblast growth factor 21 is a novel hormonal regulator with the potential to treat a broad variety of metabolic abnormalities, such as type 2 diabetes, obesity, hepatic steatosis, and cardiovascular disease. Human recombinant wild type FGF21 (FGF21) has been shown to ameliorate metabolic disorders in rodents and non-human primates. However, development of FGF21 as a drug is challenging and requires re-engineering of its amino acid sequence to improve protein expression and formulation stability. Here we report the design and characterization of a novel FGF21 variant, LY2405319. To enable the development of a potential drug product with a once-daily dosing profile, in a preserved, multi-use formulation, an additional disulfide bond was introduced in FGF21 through Leu118Cys and Ala134Cys mutations. FGF21 was further optimized by deleting the four N-terminal amino acids, His-Pro-Ile-Pro (HPIP), which was subject to proteolytic cleavage. In addition, to eliminate an O-linked glycosylation site in yeast a Ser167Ala mutation was introduced, thus allowing large-scale, homogenous protein production in Pichia pastoris. Altogether re-engineering of FGF21 led to significant improvements in its biopharmaceutical properties. The impact of these changes was assessed in a panel of in vitro and in vivo assays, which confirmed that biological properties of LY2405319 were essentially identical to FGF21. Specifically, subcutaneous administration of LY2405319 in ob/ob and diet-induced obese (DIO) mice over 7–14 days resulted in a 25–50% lowering of plasma glucose coupled with a 10–30% reduction in body weight. Thus, LY2405319 exhibited all the biopharmaceutical and biological properties required for initiation of a clinical program designed to test the hypothesis that administration of exogenous FGF21 would result in effects on disease-related metabolic parameters in humans.  相似文献   
9.
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K+) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world’s most important and salt-sensitive crop species. Using efflux analysis with 42K, coupled with growth and tissue K+ analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K+ set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K+ release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K+ status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na+ accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K+ efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K+ status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na+ accumulation is the key factor in performance decline on NaCl stress.  相似文献   
10.
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号