首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10446篇
  免费   912篇
  2023年   33篇
  2022年   30篇
  2021年   135篇
  2020年   115篇
  2019年   156篇
  2018年   198篇
  2017年   170篇
  2016年   266篇
  2015年   432篇
  2014年   440篇
  2013年   632篇
  2012年   723篇
  2011年   678篇
  2010年   468篇
  2009年   429篇
  2008年   578篇
  2007年   628篇
  2006年   548篇
  2005年   556篇
  2004年   560篇
  2003年   553篇
  2002年   628篇
  2001年   127篇
  2000年   88篇
  1999年   138篇
  1998年   146篇
  1997年   127篇
  1996年   119篇
  1995年   109篇
  1994年   100篇
  1993年   101篇
  1992年   104篇
  1991年   80篇
  1990年   69篇
  1989年   64篇
  1988年   50篇
  1987年   48篇
  1986年   40篇
  1985年   53篇
  1984年   67篇
  1983年   59篇
  1982年   95篇
  1981年   84篇
  1980年   63篇
  1979年   55篇
  1978年   53篇
  1977年   51篇
  1976年   51篇
  1975年   35篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Since the beginning of taxonomy, species have been described based on morphology, but the advent of using semio-chemicals and genetics has led to the discovery of cryptic species (i.e. morphologically similar species). When a new cryptic species is described, earlier type specimens have to be re-evaluated, although this process can be challenging as only nondestructive methods ought to be used in order to preserve the integrity of the type specimens. Methods should allow comparison with recently collected specimens clustered based on chemical, ethological and/or genetic traits with old specimens (i.e. type specimens) where only morphological traits are available. Here we develop a method based on geometric morphometric analyses of wing shape for a taxonomically challenging group of bumblebees, the subgenus Alpinobombus Skorikov. We consider nine monophyletic taxa (including several cryptic species) to assess the accuracy of this method to discriminate the taxa based on their wing shape and then to attribute type specimens using a leave-one-out cross-validation procedure. We show that, for these bees, wing shape is taxon-specific, except for two sister taxa for which the species status is still debated. Moreover, for most of the taxa, type specimens were correctly attributed with high posterior probabilities of attribution, except for a few type specimens corresponding to the same two sister taxa where taxa delimitation based on wing shape was previously the subject of discussion. Our study highlights the potential of geometric morphometric analyses to help in the re-attribution of type specimens when the existence of cryptic species is revealed.  相似文献   
2.
Lung carcinoma development is accompanied by field changes that may have diagnostic significance. We have previously shown the importance of chromosomal aneusomy in lung cancer progression. Here, we tested whether genomic gains in six specific loci, TP63 on 3q28, EGFR on 7p12, MYC on 8q24, 5p15.2, and centromeric regions for chromosomes 3 (CEP3) and 6 (CEP6), may provide further value in the prediction of lung cancer. Bronchial biopsy specimens were obtained by LIFE bronchoscopy from 70 subjects (27 with prevalent lung cancers and 43 individuals without lung cancer). Twenty six biopsies were read as moderate dysplasia, 21 as severe dysplasia and 23 as carcinoma in situ (CIS). Four-micron paraffin sections were submitted to a 4-target FISH assay (LAVysion, Abbott Molecular) and reprobed for TP63 and CEP 3 sequences. Spot counts were obtained in 30–50 nuclei per specimen for each probe. Increased gene copy number in 4 of the 6 probes was associated with increased risk of being diagnosed with lung cancer both in unadjusted analyses (odds ratio = 11, p<0.05) and adjusted for histology grade (odds ratio = 17, p<0.05). The most informative 4 probes were TP63, MYC, CEP3 and CEP6. The combination of these 4 probes offered a sensitivity of 82% for lung cancer and a specificity of 58%. These results indicate that specific cytogenetic alterations present in preinvasive lung lesions are closely associated with the diagnosis of lung cancer and may therefore have value in assessing lung cancer risk.  相似文献   
3.
Human melanoma and rat hepatoma cells cultured in the presence of low concentrations (2.5 microM) of low-molecular-weight iron (Fe) chelates and Fe-transferrin complexes have been studied with 57Fe M?ssbauer spectroscopy. The spectra show that holoferritin is only a minor fraction of the total iron present in the cells. The major form of Fe was in a low-spin state unlike the high-spin Fe(III) found in ferritin. Only about 10% of the Fe could be attributed to ferritin. In addition, the hepatoma cells had a high-spin Fe(II) spectral component which made up about 20% of the Fe present.  相似文献   
4.
TIP-15 was previously identified as a cellular protein that can bind to the C-terminal end of the HTLV-1 Tax protein via its two PDZ domains. The sequence of the N-terminal part of TIP-15 is identical to that of the synaptic protein PSD-95. Both proteins are likely to be produced from the same gene by alternative splicing. Whereas expression of the PSD-95 mRNA was detected only with brain RNAs, that of TIP-15 was detected with RNAs from thymus, brain, skeletal muscle and Jurkat cells. The TIP-15 protein exhibits an apparent molecular weight of 40 kD and is weakly expressed in T cell lines. A two-hybrid screen performed with TIP-15 as bait revealed the presence of a PDZ binding site (PDZ-BS) in the following proteins: Lysyl tRNA synthetase, 6-phosphogluconolactonase (6-GPL), Stress-activated protein kinase 3 (SAPK3), NET-1, Diacylglycerol kinase zeta, MTMR1, MCM7, and hSec8. The sequence at the C-terminal ends of these proteins matches the X-S/T-X-V-COOH consensus previously defined for PDZ-BSs, with the exception of 6-GPL and SAPK3 which include a leucine as the C-terminal residue. For Lysyl tRNA synthetase, NET1, MTMR1 and hSec8, binding to TIP-15 was confirmed by co-immunoprecipitation experiments performed with the extracts of transfected COS7 cells. These results show the existence of functional PDZ-BSs in these proteins, but future studies will be necessary to establish whether or not TIP-15 represents a physiological partner. The significance of the presence of a PDZ-BS in these various proteins is discussed with respect to their function.  相似文献   
5.
6.
Litter decomposition is a major driver of carbon (C) and nitrogen (N) cycles in forest ecosystems and has major implications for C sequestration and nutrient availability. However, empirical information regarding long-term decomposition rates of foliage and wood remains rare. In this study, we assessed long-term C and N dynamics (12–13 years) during decomposition of foliage and wood for three boreal tree species, under a range of harvesting intensities and slash treatments. We used model selection based on the second-order Akaike’s Information Criterion to determine which decomposition model had the most support. The double-exponential model provided a good fit to C mass loss for foliage of trembling aspen, white spruce, and balsam fir, as well as aspen wood. These litters underwent a rapid initial phase of leaching and mineralisation, followed by a slow decomposition. In contrast, for spruce and fir wood, the single-exponential model had the most support. The long-term average decay rate of wood was faster than that of foliage for aspen, but not of conifers. However, we found no evidence that fir and spruce wood decomposed at slower rates than the recalcitrant fraction of their foliage. The critical C:N ratios, at which net N mineralisation began, were higher for wood than for foliage. Long-term decay rates following clear-cutting were either similar or faster than those observed in control stands, depending on litter material, tree species, and slash treatment. The critical C:N ratios were reached later and decreased for all conifer litters following stem-only clear-cutting, indicating increased N retention in harvested sites with high slash loads. Partial harvesting had weak effects on C and N dynamics of decaying litters. A comprehensive understanding of the long-term patterns and controls of C and N dynamics following forest disturbance would improve our ability to forecast the implications of forest harvesting for C sequestration and nutrient availability.  相似文献   
7.
SUMMARY The molecular mechanisms underlying the formation and patterning of the nervous system are relatively poorly understood for lophotrochozoans (like annelids) as compared with ecdysozoans (especially Drosophila ) and deuterostomes (especially vertebrates). Therefore, we have undertaken a candidate gene approach to study aspects of neurogenesis in a polychaete annelid Platynereis dumerilii . We determined the spatiotemporal expression for Platynereis orthologs of four genes ( SoxB, Churchill, prospero / Prox , and SoxC) known to play key roles in vertebrate neurogenesis. During Platynereis development, SoxB is expressed in the neuroectoderm and its expression switches off when committed neural precursors are formed. Subsequently, Prox is expressed in all differentiating neural precursors in the central and peripheral nervous systems. Finally, SoxC and Churchill are transcribed in patterns consistent with their involvement in neural differentiation. The expression patterns of Platynereis SoxB and Prox closely resemble those in Drosophila and vertebrates—this suggests that orthologs of these genes play similar neurogenic roles in all bilaterians. Whereas Platynereis SoxC , like its vertebrate orthologs, plays a role in neural cell differentiation, related genes in Drosophila do not appear to be involved in neurogenesis. Finally, conversely to Churchill in Platynereis , vertebrate orthologs of this gene are expressed during neuroectoderm formation, but not later during nerve cell differentiation; in the insect lineage, homologs of these genes have been secondarily lost. In spite of such instances of functional divergence or loss, the present study shows conspicuous similarities in the genetic control of neurogenesis among bilaterians. These commonalities suggest that key features of the genetic program for neurogenesis are ancestral to bilaterians.  相似文献   
8.
9.
Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号