首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   9篇
  2012年   15篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   11篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.

Bacillus methylotrophicus M4-96 is a beneficial rhizobacterium that has been isolated from the rhizosphere of maize (Zea mays). In this study, we investigated its efficacy as a plant growth promoter for strawberry in vitro, as well as its ability to induce callose deposition in leaves to reduce the severity of Botrytis cinerea infection. Two methods of plant-bacterial interaction were used: inoculation near the root and emission of volatile compounds with no physical contact. Plant biomass increased under both treatments, but with developmental parameters of the plants differentially stimulated by each method. Root inoculation increased petiole number and root length, whereas bacterial volatiles increased petiole length and root number. A chemical analysis of the bacterial culture revealed the presence of indole acetic acid (0.21 μg L−1) and gibberellic acid (6.16 μg L−1). Acetoin was previously identified as the major volatile produced by the bacteria, and its application to strawberry explants increased their growth and development. Furthermore, when acetoin and both phytoregulators were added to the culture media, these positive effects were enhanced. The inoculation method also affected the size and quantity of callose deposits in the leaves. Treatment with volatiles increased callose deposition in the leaves by up to five-fold, which promoted a rapid defense reaction that inhibited the incidence of gray mold by reinforcing cell wall. Taken together, our results show that B. methylotrophicus M4-96 promotes growth and induces systemic resistance in strawberry plants.

  相似文献   
6.
Biological Trace Element Research - This research article aims to establish the intake ratio of probiotic Lactobacillus plantarum 299v with iron supplement pearl millet by central composite design...  相似文献   
7.
Exposure of citrus fruit to frost often results in the development of freeze injury during their maturation in planta. This work was aimed to analyze changes in the biochemistry and enzymology of carbohydrate metabolism in freeze-injured orange fruit ( Citrus sinensis var. Valencia late) and the involvement of oxidative stress in frost damage. The activities of pyrophosphate-dependent phosphofructokinase, phosphoenolpyruvate carboxylase and several fermentative enzymes increased in frost-exposed (FE) fruit, while NADP-malic enzyme and the mitochondrial isoform of NAD-malate dehydrogenase showed a reduction in their activities. Western blot analysis indicated a correlation between activity levels and protein content. Respiration rate in whole fruit was reduced by 40%, whereas the flavedo showed a more pronounced decline (53%). Volatile compound (i.e. ethanol and acetaldehyde) content was significantly higher in FE fruit than in control, as was that of l -malate (three-fold). Additionally, FE fruit showed a marked decrease in the maturity index (24%) because of a higher titratable acidity (39%). Evidence is presented that oxidative stress is involved in freeze-induced damage of orange fruit, where oxidative damage to lipids and proteins, and a greater electrolyte leakage in the flavedo were also observed. The results suggest that freezing temperatures provoke a notable metabolic switch in citrus fruit toward a fermentative stage, resulting in low-quality fruits.  相似文献   
8.

Background  

Coffea canephora, also called Robusta, belongs to the Rubiaceae, the fourth largest angiosperm family. This diploid species (2x = 2n = 22) has a fairly small genome size of ≈ 690 Mb and despite its extreme economic importance, particularly for developing countries, knowledge on the genome composition, structure and evolution remain very limited. Here, we report the 160 kb of the first C. canephora Bacterial Artificial Chromosome (BAC) clone ever sequenced and its fine analysis.  相似文献   
9.
Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3′-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients.  相似文献   
10.
HIV-protease inhibitors (PIs) markedly decreased mortality of HIV-infected patients. However, their use has been associated with occurence of metabolic abnormalities the causes of which are not well understood. We report here that lopinavir, one of the most prescribed PI, dose-dependently co-induced insulin resistance and ER stress in human adipocytes obtained from differentiation of precursor cells.Insulin resistance was subsequent to IRS1 phosphorylation defects and resulted in a concentration-dependent decrease of glucose uptake. The major ER stress pathway involved was the phosphorylation of eIF2-α. Salubrinal, a selective eIF2-α dephosphorylation inhibitor, induced insulin resistance by targeting IRS1 phosphorylation at serine 312 and acted synergistically with LPV when both drugs were used in combination.This study points out the key role of eIF2-α phosphorylation in the development of PI-associated insulin resistance and ER stress. Thus, this protein represents a promising therapeutic target for development of new PIs devoid of adverse metabolic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号