首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   10篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有78条查询结果,搜索用时 156 毫秒
1.
Vaughan  D.  Cheshire  M. V.  Ord  B. G. 《Plant and Soil》1994,160(2):185-191
The duckweed Lemna gibba required light and a suitable energy source such as sucrose, glucose or fructose, for maximum growth in culture. The requirement for light was relatively unimportant and the plants grew well in a photon flux density of only 52 μmol m-2s-1 PAR. The uptake and incorporation of uniformly labelled 14C-glucose into fronds was related only to the concentration of the sugar. When incubated with soil, labelled L. gibba behaved in a manner similar to that of labelled ryegrass roots which had been produced by a more elaborate technique using a 14CO2 labelled atmosphere. During incubation with soil for 224 days the L. gibba material (specific activity 6133 Bq mg-1 d. wt) lost 64% of its radioactivity as 14CO2 and ryegrass (specific activity 6634 Bq mg-1 d. wt) lost 49%. Alkaline extracted humic and fulvic acids from soil had specific activities for the L. gibba incubation of 3409 and 407 Bq mg-1 solid and for ryegrass roots of 4609 and 546 Bq mg-1 solid respectively. The production of 13C or 14C-labelled L. gibba can be undertaken using only simple equipment producing material the specific radioactivity of which can be controlled by adjusting the activity of the sugar energy source.  相似文献   
2.
The transition toward a circular economy (CE) is key in decarbonizing the built environment. Despite this, knowledge of—and engagement with—CE philosophies remains limited within the construction industry. Discussion with practitioners reveals this to be contributed to by a lack of clarity regarding CE principles, with numerous organizations recommending implementation of differing and sometimes conflicting principles. In addition, a systematic assessment of how building designs consider CE is made difficult by the multiple design areas required to be considered and the large amount of design data required to do so. The absence of a systematic CE assessment causes a lack of comparability across designs, preventing benchmarking of CE practices in building design at present. This paper details the development of Regenerate, a CE engagement tool for the assessment of new and existing buildings, established in an effort to overcome the aforementioned barriers to the adoption of CE within the construction sector. A CE design workflow for the built environment is proposed, comprising four overarching circularity principles (Design for Adaptability; Design for Deconstructability; Circular Material Selection; Resource Efficiency) and contributing design actions. In addition to engaging stakeholders by enabling the assessment of building designs, the tool retrieves key data for further research. Information on completed design actions as well as recycling and waste metrics is collected to facilitate future CE benchmarking. “Bill of materials” data (i.e., material quantities) is also compiled, with this being key in material stock modeling research and embodied carbon benchmarking.  相似文献   
3.
Summary The effect of fertilization with nitrogen and copper on the amino acid composition of oat straw has been studied.The plants (Avena sativa cv Yielder) were grown in peat with a very low copper content and supplied with two levels of nitrogen (NH4 or NO3) and three levels of copper sulphate.The higher level of nitrogen stimulated growth only when copper was added, whereas, without copper, it had an adverse effect on growth and prevented grain formation altogether. The higher level of nitrogen increased the nitrogen content of the straw at all levels of copper, but particularly in plants receiving no copper.Total amino acids in the straw hydrolysate of copper sufficient oats accounted for about 50% of the total N and was about 20% higher in copper-deficient tissues. The addition of copper caused a decrease in the amounts of all amino acids. The relative proportions of most of the amino acids to glycine remained fairly constant. Threonine, serine, alanine, iso-leucine, histidine and arginine showed small significant differences with copper treatment, whereas valine, tyrosine, phenylalanine, proline, lysine and cysteic acid (derived from cysteine and cystine) showed no differences. The proportion of aspartic acid relative to glycine in the straw hydrolysate was greatly increased in copper deficient plants supplied with the higher level of nitrogen, particularly as ammonium. The proportion of glutamic acid was also increased by the higher level of nitrogen, but showed no effect of added copper. Most of the difference in aspartic acid could be accounted for as free asparagine. The possible reasons for higher proportions of asparagine are discussed in relation to the metabolism of the oat plant.  相似文献   
4.
Chlamydomonas reinhardtii cells shed their flagella in response to environmental stress. Under favorable conditions, flagella are quickly regrown. To learn more about the signals that trigger flagellar excision and regrowth we have investigated inositol phospholipid metabolites, molecules implicated in signal transduction in several other systems. After deflagellation by low pH or mastoparan, a potent activator of G proteins, there was a rapid increase in levels of inositol 1,4,5-trisphosphate measured by use of receptor-binding assays and HPLC. This increase was concomitant with a decrease in levels of phosphatidylinositol 4,5-bisphosphate and was followed by an increase in phosphatidic acid, results consistent with activation of phospholipase C and diacylglycerol kinase. Additional experiments suggest that this activated phospholipase C is not important for flagellar regrowth but plays a role in informing the excision apparatus of the environmental stress. Addition of neomycin (an inhibitor of phospholipase C) before exposure of cells to low pH or mastoparan prevented the increase in inositol 1,4,5-trisphosphate and also prevented deflagellation. Addition of neomycin after deflagellation blocked increases in inositol 1,4,5-trisphosphate that normally followed deflagellation, but did not block flagellar assembly. Furthermore, a flagellar excision-defective mutant, fa-1, did not shed its flagella in response to low pH or mastoparan, yet both of these agents activated phospholipase C in these cells. The results suggest that activation of phospholipase C, possibly via a G protein, is a proximal step in the signal transduction pathway inducing deflagellation in Chlamydomonas.  相似文献   
5.
6.
β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.  相似文献   
7.
Abstract

A test of the antifouling properties of Wattyl NetClear® was conducted on fish farms containing southern bluefin tuna (Thunnus maccoyii) during a 6-month period (February-July 2002). Wattyl NetClear® is a water-based synthetic latex-based coating where the active antifouling agent is a mixture of two isothiazolinones likely to affect both biochemical conditioning and bacterial colonisation. The development of fouling was monitored using underwater stereo-photogrammetry on 3 treated and 3 untreated net cages with the main factors treatment, depth and cage nested within treatment. A significant treatment and depth effect was found but variable through time and in some instances with significant cage effects. By the end of the study, the difference in fouling load between treated and untreated nets was 14.7%. In total 72% of all free-space data points were on treated nets. The dominating fouling organisms were Enteromorpha sp. and sponges with low settlement of blue mussel and paper oysters. Passive deposition of tuna faeces contributed significantly to the cover. The largest cover of fouling was observed in April-May with a dominance of sponges in June-July. Enteromorpha sp. dominated shallow depths while sponges dominated at deeper levels. Tuna faeces were distributed independent of depth but varied with time. The results showed that fouling of fish cages consisted of both active settlement and passive deposition, the latter independent on antifouling treatment.  相似文献   
8.
The ability to control the morphologies of biomolecular aggregates is a central objective in the study of self-assembly processes. The development of predictive models offers the surest route for gaining such control. Under the right conditions, proteins will self-assemble into fibers that may rearrange themselves even further to form diverse structures, including the formation of closed loops. In this study, chicken egg white ovalbumin is used as a model for the study of fibril loops. By monitoring the kinetics of self-assembly, we demonstrate that loop formation is a consequence of end-to-end association between protein fibrils. A model of fibril formation kinetics, including end-joining, is developed and solved, showing that end-joining has a distinct effect on the growth of fibrillar mass density (which can be measured experimentally), establishing a link between self-assembly kinetics and the underlying growth mechanism. These results will enable experimentalists to infer fibrillar morphologies from an appropriate analysis of self-assembly kinetic data.  相似文献   
9.
The use of ion mobility mass spectrometry has grown rapidly over the last two decades. This powerful analytical platform now forms an attractive prospect for comprehensive analysis of many different molecular species, including chemically complex biological molecules. This paper describes the application of IM-MS to the study of peptides. We focus on three different ion mobility devices that are most frequently found in tandem with mass spectrometers. These are instruments using linear drift tubes (LDT), those using travelling wave ion guides (TWIGS) and those employing high field asymmetric ion mobility spectrometry (FAIMS). Each technique is described. Examples are given on the use of IM-MS for the determination of peptide structure, the study of peptides that form amyloid fibrils, and the study of complex peptide mixtures in proteomic investigations. We describe and comment on the methodologies used and the outlook for this developing analytical technique.  相似文献   
10.
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号