首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14948篇
  免费   1812篇
  国内免费   1134篇
  2023年   244篇
  2022年   271篇
  2021年   680篇
  2020年   699篇
  2019年   762篇
  2018年   723篇
  2017年   542篇
  2016年   691篇
  2015年   1015篇
  2014年   1230篇
  2013年   1256篇
  2012年   1552篇
  2011年   1429篇
  2010年   901篇
  2009年   725篇
  2008年   806篇
  2007年   740篇
  2006年   603篇
  2005年   525篇
  2004年   382篇
  2003年   301篇
  2002年   276篇
  2001年   190篇
  2000年   176篇
  1999年   173篇
  1998年   113篇
  1997年   109篇
  1996年   101篇
  1995年   88篇
  1994年   83篇
  1993年   60篇
  1992年   80篇
  1991年   54篇
  1990年   54篇
  1989年   47篇
  1988年   34篇
  1987年   26篇
  1986年   24篇
  1985年   28篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   5篇
  1979年   10篇
  1978年   4篇
  1977年   3篇
  1976年   9篇
  1975年   8篇
  1974年   3篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Recent studies have emphasized the important role of microRNA (miRNA) clusters and common target genes in disease progression. Despite the known involvement of the miR‐192/215 family in many human diseases, its biological role in Hirschsprung disease (HSCR) remains undefined. In this study, we explored the role of the miR‐192/215 family in the pathogenesis of HSCR. Quantitative real‐time PCR and western blotting measured relative expression levels of miRNAs, mRNAs, and proteins in 80 HSCR patients and 77 normal colon tissues. Targets were evaluated by dual‐luciferase reporter assays, and the functional effects of miR‐192/215 on human 293T and SH‐SY5Y cells were detected by the Transwell assay, CCK8 assay and flow cytometry. MiR‐192/215 was significantly down‐regulated in HSCR tissue samples, and their knockdown inhibited cell migration and proliferation in the human 293T and SH‐SY5Y cell lines. Nidogen 1 (NID1) was confirmed as a common target gene of miR‐192/215 by dual‐luciferase reporter gene assay and its expression was inversely correlated with that of miR‐192/215 in tissue samples and cell lines. Silencing of NID1 could rescue the extent of the suppressing effects by miR‐192/215 inhibitor. The down‐regulation of miR‐192/215 may contribute to HSCR development by targeting NID1.

  相似文献   

2.
It was found that S-adenosylmethionine (SAM) could effectively improve avermectin titer with 30–60 μg/mL addition to FH medium. To clearly elucidate the mechanism of SAM on intracellular metabolites of Streptomyces avermitilis, a GC–MS-based comparative metabolomics approach was carried out. First, 230 intracellular metabolites were identified and 14 of them remarkably influenced avermectin biosynthesis were discriminative biomarkers between non-SAM groups and SAM-treated groups by principal components analysis (PCA) and partial least squares (PLS). Based on further key metabolic pathway analyses, these biomarkers, such as glucose, oxaloacetic acid, fatty acids (in soybean oil), threonine, valine, and leucine, were identified as potentially beneficial precursors and added in medium. Compared with single-precursor feeding, the combined feeding of the precursors and SAM markedly increased the avermectin titer. The co-feeding approach not only directly verified our hypothesis on the mechanism of SAM by comparative metabolomics, but also provided a novel strategy to increase avermectin production.  相似文献   
3.
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.  相似文献   
4.

Purpose

Congenital heart diseases (CHD) are among the most common birth defects in China. Environmental causes and folate metabolism changes may alter susceptibility to CHD. The aim of this study is to evaluate the relevant risk-factors of children with CHD and their mothers.

Methods

138 children with CHD and 207 normal children for controls were recruited. Their mothers were also enlisted in this study and interviewed following a questionnaire about their pregnant history and early pregnancy situation. Five single nucleotide polymorphisms (SNPs) in methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MS) and cystathionine β-synthase (CBS) of mothers and children were genotyped.

Results

There were significant differences in the gender of children, occupation of mothers, family history with CHD, history of abortion, history of adverse pregnancy, early pregnancy health, fetus during pregnancy, pesticide exposure and drug exposure in CHD group and control group ( P < 0.05). Logistic regression analyses showed that after adjustment for above factors, MTHFR rs1801131 were significantly associated with their offspring CHD risk in mothers. Compared with the mothers whose MTHFR were rs1801131 AA and AC genotypes, the mothers who got a mutation of MTHFR rs1801131 CC genotypes had a 267% increase in risk of given birth of a CHD children (OR=3.67,95%CI=1.12-12.05). Meanwhile, MTHFR rs1801131 were significantly associated with CHD susceptibility in children (OR = 1.42, 95% CI = 1.00-2.44 in additive model).

Conclusions

Besides mothers’ social and fertility characteristics, our results suggested that the genetic variants in folate metabolism pathway might be one of the most related risk-factors of CHD. MTHFR rs1801131 were identified as loci in Chinese population that were involved in CHD.  相似文献   
5.
6.
7.
8.
Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号