首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17569篇
  免费   1536篇
  国内免费   8篇
  2023年   76篇
  2022年   67篇
  2021年   319篇
  2020年   225篇
  2019年   281篇
  2018年   358篇
  2017年   310篇
  2016年   493篇
  2015年   833篇
  2014年   919篇
  2013年   1084篇
  2012年   1448篇
  2011年   1320篇
  2010年   879篇
  2009年   841篇
  2008年   1099篇
  2007年   1117篇
  2006年   990篇
  2005年   1029篇
  2004年   934篇
  2003年   861篇
  2002年   828篇
  2001年   150篇
  2000年   133篇
  1999年   184篇
  1998年   216篇
  1997年   149篇
  1996年   124篇
  1995年   112篇
  1994年   122篇
  1993年   120篇
  1992年   103篇
  1991年   86篇
  1990年   119篇
  1989年   99篇
  1988年   85篇
  1987年   89篇
  1986年   49篇
  1985年   82篇
  1984年   90篇
  1983年   59篇
  1982年   79篇
  1981年   67篇
  1980年   49篇
  1979年   47篇
  1978年   37篇
  1977年   34篇
  1976年   30篇
  1975年   20篇
  1974年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
3.
4.
5.
MLK-3 kinase is a widely expressed serine/ threonine kinase that bears multiple protein interaction domains and regulates signals mediated by the stress-responsive pathway. Thus, MLK-3 signaling affects numerous cellular processes, raising the possibility that MLK-3 might play a role in oncogenesis. In this report, we describe the fine mapping of the MLK-3 gene within the 11q13.1 chromosomal region. By integrating data from somatic cell hybrids and double color fluorescence in situ hybridization on metaphase chromosomes and DNA fibers, MLK-3 has been assigned approximately 1 Mb telomeric of PYGM, close to the D11S546 locus. Since the MEN1 susceptibility locus is also located within the 11q13.1 region, we have carried out Southern and Northern blot analyses, as well as protein truncation assays to establish whether abnormalities in MLK-3 lead to the development of this familial cancer syndrome. Our observations exclude MLK-3 as the MEN1 gene. Received: 25 September 1996 / Revised: 16 December 1996  相似文献   
6.

Experimental Data

Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult.

Mathematical Modeling

We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods.  相似文献   
7.
Descending aortic dissection (DAD) is associated with high morbidity and mortality rates. Aortic wall stiffness is a variable often altered in DAD patients and potentially involved in long-term outcome. However, its relevance is still mostly unknown. To gain more detailed knowledge of how wall elasticity (compliance) might influence intraluminal haemodynamics in DAD, a lumped-parameter model was developed based on experimental data from a pulsatile hydraulic circuit and validated for 8 clinical scenarios. Next, the variations of intraluminal pressures and flows were assessed as a function of wall elasticity. In comparison with the most rigid-wall case, an increase in elasticity to physiological values was associated with a decrease in systolic and increase in diastolic pressures of up to 33% and 63% respectively, with a subsequent decrease in the pressure wave amplitude of up to 86%. Moreover, it was related to an increase in multidirectional intraluminal flows and transition of behaviour as 2 parallel vessels towards a vessel with a side-chamber. The model supports the extremely important role of wall elasticity as determinant of intraluminal pressures and flow patterns for DAD, and thus, the relevance of considering it during clinical assessment and computational modelling of the disease.  相似文献   
8.
Despite an established link between epilepsy and sleep behavior, it remains unclear how specific epileptogenic mutations affect sleep and subsequently influence seizure susceptibility. Recently, Sun et al. (2012) created a fly knock-in model of human generalized epilepsy with febrile seizures plus (GEFS+), a wide-spectrum disorder characterized by fever-associated seizing in childhood and lifelong affliction. GEFS+ flies carry a disease-causing mutation in their voltage-gated sodium channel (VGSC) gene and display semidominant heat-induced seizing, likely due to reduced GABAergic inhibitory activity at high temperature. Here, we show that at room temperature the GEFS+ mutation dominantly modifies sleep, with mutants exhibiting rapid sleep onset at dusk and increased nighttime sleep as compared to controls. These characteristics of GEFS+ sleep were observed regardless of sex, mating status, and genetic background. GEFS+ mutant sleep phenotypes were more resistant to pharmacologic reduction of GABA transmission by carbamazepine (CBZ) than controls, and were mitigated by reducing GABAA receptor expression specifically in wake-promoting pigment dispersing factor (PDF) neurons. These findings are consistent with increased GABAergic transmission to PDF neurons being mainly responsible for the enhanced nighttime sleep of GEFS+ mutants. Additionally, analyses under other light conditions suggested that the GEFS+ mutation led to reduced buffering of behavioral responses to light on and off stimuli, which contributed to characteristic GEFS+ sleep phenotypes. We further found that GEFS+ mutants had normal circadian rhythms in free-running dark conditions. Interestingly, the mutants lacked a homeostatic rebound following mechanical sleep deprivation, and whereas deprivation treatment increased heat-induced seizure susceptibility in control flies, it unexpectedly reduced seizure activity in GEFS+ mutants. Our study has revealed the sleep architecture of a Drosophila VGSC mutant that harbors a human GEFS+ mutation, and provided unique insight into the relationship between sleep and epilepsy.  相似文献   
9.
Summary The regulation of growth and development of insects is under endocrine control and involves both juvenile hormones and ecdysteroids. Neuropeptides are master regulators which control the secretion of these hormones. Most experiments in insect endocrinology have been conducted in vivo, but tissue culture methodology is playing an increasing role due to the great interest in simpler model systems for the study of complex processes that occur in vivo. The availability of appropriate media has allowed the culture of a variety of insect organs and cell lines of defined origin which have kept certain properties of the parent tissues. Tissue culture approaches have been useful for studying hormonal control of morphogenetic processes. Cell lines are particularly suited to the study of hormonally regulated mechanisms of macromolecular biosynthesis and gene expression. Thus, the value of in vitro analysis in studies of regulation of hormone production is now recognized. Results obtained from tissue culture allow more precise definition of the hormonal requirements of insect cells and tissues for growth and differentiation and might make possible the discovery of new growth regulators.  相似文献   
10.
Brown  Patrick H.  Hu  Hening 《Plant and Soil》1997,196(2):211-215
In species in which boron (B) mobility is limited, B deficiency only occurs in growing plant organs. As a consequence of the highly localized patterns of plant growth and the general immobility of B it has been extremely difficult to determine the primary function of B in plants. In species in which B is phloem mobile, the removal of B from the growth medium results in the depletion of B present in mature leaves. Thus, it is possible to develop mature leaves with increasingly severe levels of B depletion, thereby overcoming the complications of experiments based on growing tissues. Utilizing this approach we demonstrate here that B depletion of mature plum (Prunus salicina) leaves did not result in any discernible change in leaf appearance, membrane integrity or photosynthetic capacity even though B concentrations were reduced to 6-8 µg/g dwt, which is less than 30% of the reported tissue B requirement. Boron depletion, however, results in a severe disruption of plant growth and metabolism in young growing tissues. This experimental evidence and theoretical considerations suggest that the primary and possibly sole function of B, is as a structural component of growing tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号