首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2013年   5篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
2.
The ecology of the fishes in Nyumba ya Mungu reservoir, Tanzania   总被引:1,自引:0,他引:1  
Twenty species of fish were found in Nyumba ya Mungu reservoir on the River Pangani which, with two exceptions, were indigenous to the river basin. Their distribution is described and some information on their growth, reproduction and feeding habits is presented. The highest densities of fish were found in the littoral and the broad, shallow, upstream region of the lake. The lacustrine environment has favoured the endemic tilapias, Sarotherodon jipe and S. pangani , which graze periphyton, and the introduced species, S. esculentus which feeds on phytoplankton. Males of the endemic forms may grow to a large size, but the introduced species, including Tilapia rendalli , were heavier for a given length. A reduction in tilapia stocks since 1970 is reflected in experimental catches during 1972-74 and was attributed to the combined effects of heavy commercial exploitation and a loss of spawning grounds. In the same period a striking increase in the populations of small carnivores, Rhabdalestes leleupi and Haplochromis gr. bloyeti , was recorded. Kully plantivorous and piscivorous fish are absent but omnivores are represented by Barbus species and Synodontis punctulatus. Tilapias exhibited a high incidence of nematode infection and the available evidence indicates that fish-eating birds are important predators of cichlids in Nyumba ya Mungu.  相似文献   
3.
ABSTRACT. Sand fly and mosquito gregarines have been lumped for a long time in the single genus Ascogregarina and on the basis of their morphological characters and the lack of merogony been placed into the eugregarine family Lecudinidae. Phylogenetic analyses performed in this study clearly demonstrated paraphyly of the current genus Ascogregarina and revealed disparate phylogenetic positions of gregarines parasitizing mosquitoes and gregarines retrieved from sand flies. Therefore, we reclassified the genus Ascogregarina and created a new genus Psychodiella to accommodate gregarines from sand flies. The genus Psychodiella is distinguished from all other related gregarine genera by the characteristic localization of oocysts in accessory glands of female hosts, distinctive nucleotide sequences of the small subunit rDNA, and host specificity to flies belonging to the subfamily Phlebotominae. The genus comprises three described species: the type species for the new genus— Psychodiella chagasi ( Adler and Mayrink 1961 ) n. comb., Psychodiella mackiei ( Shortt and Swaminath 1927 ) n. comb., and Psychodiella saraviae ( Ostrovska, Warburg, and Montoya-Lerma 1990 ) n. comb. Its creation is additionally supported by sequencing data from other gregarine species originating from the sand fly Phlebotomus sergenti . In the evolutionary context, both genera of gregarines from mosquitoes ( Ascogregarina ) and sand flies ( Psychodiella ) have a close relationship to neogregarines; the genera represent clades distinct from the other previously sequenced gregarines.  相似文献   
4.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   
5.
The adipokinetic hormones (AKHs) from 15 species of heteropteran Hemiptera (encompassing eight families, six superfamilies and three infraorders) have been isolated and structurally identified using liquid chromatography coupled with mass spectrometry. None of the structures are novel and all are octapeptides. These peptide sequence data are used, together with the previously available AKH sequence data on Heteroptera, to create a larger dataset for comparative analyses. This results, in total, in AKH sequences from 30 species (spanning 13 families), which are used in a matrix confronted with the current hypotheses on the phylogeny of Heteroptera. The expanded dataset shows that all heteropterans have octapeptide AKHs; three species have two AKHs, whereas the overwhelming majority have only one AKH. From a total of 11 different AKH peptides known from Heteroptera to date, three AKHs occur frequently: Panbo‐red pigment‐concentrating hormone (RPCH) (×10), Schgr‐AKH‐II (×6) and Anaim‐AKH (×4). The heteropteran database also suggests that particular AKH variants are family‐specific. The AKHs of Heteroptera: Pentatomomorpha (all terrestrial) are not present in Nepomorpha (aquatic) and Gerromorpha: Gerridae (semiaquatic); AKHs with a Val in position 2 are absent in the Pentatomomorpha (only AKHs with Leu2 are present), whereas Val2 predominates in the nonterrestrial species. An unexpected diversity of AKH sequences is found in Nepomorpha, Nepoidea, Nepidae and Nepinae, whereas Panbo‐RPCH (which has been identified in all infraorders of decapod crustaceans) is present in all analysed species of Pentatomidae and also in the only species of Tessaratomidae investigated. The molecular evolution of Heteroptera with respect to other insect groups and to crustaceans is discussed  相似文献   
6.
7.
8.
We monitored the radioligand-binding characteristics of thyrotropin-releasing hormone (TRH) receptors, functional activity of Gq/11α proteins, and functional status of the whole signaling cascade in HEK293 expressing high levels of TRH receptors and G11α. Our analyses indicated that disruption of plasma membrane microdomains by cholesterol depletion did not markedly influence the binding parameters of TRH receptors, but it altered efficacy of signal transduction. The functional coupling between TRH receptor and Gq/11α was assessed by agonist-stimulated [35S]GTPγS binding, and results of these measurements pointed out to significantly lower potency of TRH to mediate G protein activation in the plasma membrane fraction isolated from cholesterol-depleted cells; there was a shift in sensitivity by one order of magnitude to the higher concentrations. A markedly lower sensitivity to stimulation with TRH was also observed in our experiments dealing with determination of hormone-induced Ca2+ response. These data suggest that the intact structure of plasma membranes is an important optimum signal transduction initiated by TRH receptors and mediated by Gq/11α proteins.  相似文献   
9.
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.  相似文献   
10.
Abstract.  Fifty-four genera of the bee family Apidae comprising almost all tribes were analysed based on 77 traditional and one new character of the mature larvae. Nine, especially cleptoparasitic species, were newly added. Analyses were performed by maximum parsimony and Bayesian inference. Trees inferred from the analysis of the complete dataset were rooted by taxa from the families Melittidae and Megachilidae. Unrooted trees inferred from the analysis of the partial dataset (excluding outgroup taxa) are also presented to preclude possible negative effects of the outgroup on the topology of the ingroup. Only the subfamily Nomadinae was statistically well supported. The monophyly of the subfamilies Xylocopinae and Apinae was not topologically recovered. The monophyly of the tribe Tetrapediini was supported, and this tribe was found to be related to xylocopine taxa. At the very least, larval morphology suggests that Tetrapedia is not a member of the subfamily Apinae. Our analyses support the monophyly of the Eucerine line (Emphorini, Eucerini, Exomalopsini, Tapinotaspidini) and of the Apine line (Anthophorini, Apini, Bombini, Centridini, Euglossini, Meliponini). All analyses support the monophyly of totally cleptoparasitic tribes of the subfamily Apinae. We named this group the Melectine line (Ericrocidini, Isepeolini, Melectini, Osirini, Protepeolini, Rhathymini). In previous studies all these cleptoparasitic tribes were considered independent evolutionary lineages. Our results suggest that their similarities with hosts in morphology and pattern are probably the result of convergence and host–parasite co-evolution than phylogenetic affinity. According to the present analysis, the cleptoparasitism has evolved independently only six times within the family Apidae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号