首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601491篇
  免费   64918篇
  国内免费   346篇
  2018年   6030篇
  2017年   5874篇
  2016年   8048篇
  2015年   10039篇
  2014年   11975篇
  2013年   17428篇
  2012年   19258篇
  2011年   19657篇
  2010年   13434篇
  2009年   12275篇
  2008年   17289篇
  2007年   17783篇
  2006年   16643篇
  2005年   15962篇
  2004年   15784篇
  2003年   15073篇
  2002年   14493篇
  2001年   31152篇
  2000年   30959篇
  1999年   23953篇
  1998年   7314篇
  1997年   7883篇
  1996年   7191篇
  1995年   6832篇
  1994年   6601篇
  1993年   6602篇
  1992年   18754篇
  1991年   18050篇
  1990年   17419篇
  1989年   16821篇
  1988年   15420篇
  1987年   14411篇
  1986年   13396篇
  1985年   13148篇
  1984年   10803篇
  1983年   9051篇
  1982年   6720篇
  1981年   6084篇
  1980年   5721篇
  1979年   10053篇
  1978年   7689篇
  1977年   7066篇
  1976年   6416篇
  1975年   7192篇
  1974年   7807篇
  1973年   7652篇
  1972年   6968篇
  1971年   6295篇
  1970年   5466篇
  1969年   5212篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min?1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.  相似文献   
2.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   
3.
Landscape features affect habitat connectivity and patterns of gene flow and hence influence genetic structure among populations. We studied valley oak (Quercus lobata), a threatened species of California (USA) savannas and oak woodlands, with a distribution forming a ring around the Central Valley grasslands. Our main goal was to determine the role of topography and land cover on patterns of gene flow and to test whether elevation or land cover forms stronger barriers to gene flow among valley oak populations. We sampled valley oaks in 12 populations across the range of this species, genotyped each tree at eight nuclear microsatellite loci, and created a series of resistance surfaces by assigning different resistance values to land cover type and elevation. We also estimated recent migration rates and evaluated them with regard to landscape features. There was a significant but weak relationship between Euclidian distance and genetic distance. There was no relationship between genetic distances and land cover, but a significant relationship between genetic distances and elevation resistance. We conclude that gene flow is restricted by high elevations in the northern part of the valley oak range and by high elevations and the Central Valley further south. Migration rate analysis indicated some gene flow occurring east–west but we suggest that the high connectivity in the northern Central Valley is facilitating the formation of these links. We predict that southern populations may become more differentiated in the future through genetic isolation and local adaptation taking place in the face of climate change.  相似文献   
4.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
5.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   
6.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
7.
This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed.  相似文献   
8.
9.
Troyer syndrome is caused by a mutation in the SPG20 gene, which results in complete loss of expression of the protein spartin. We generated a genetic model of Troyer syndrome in worms to explore the locomotor consequences of a null mutation of the Caenorhabditis elegans SPG20 orthologue, F57B10.9, also known as spg-20. Spg-20 mutants showed decreased length, crawling speed, and thrashing frequency, and had a shorter lifespan than wild-type animals. These results suggest an age-dependent decline in motor function in mutant animals. The drug paraquat was used to induce oxidative stress for 4 days in the animals. We measured survival rate and examined locomotion by measuring crawling speed and thrashing frequency. After 4 days of paraquat exposure, 77% of wild-type animals survived, but only 38% of spg-20 mutant animals survived. Conversely, animals overexpressing spg-20 had a survival rate of 95%. We also tested lifespan after a 1 hour exposure to sodium azide. After a 24 hour recovery period, 87% of wild type animals survived, 57% of spg-20 mutant animals survived, and 82% of animals overexpressing spg-20 survived. In the behavioral assays, spg-20 mutant animals showed a significant decrease in both crawling speed and thrashing frequency compared with wild-type animals. Importantly, the locomotor phenotype for both crawling and thrashing was rescued in animals overexpressing spg-20. The animals overexpressing spg-20 had crawling speeds and thrashing frequencies similar to those of wild-type animals. These data suggest that the protein F57B10.9/SPG-20 might have a protective role against oxidative stress.  相似文献   
10.
Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号