首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   54篇
  2023年   2篇
  2021年   11篇
  2020年   8篇
  2019年   13篇
  2018年   12篇
  2017年   19篇
  2016年   26篇
  2015年   46篇
  2014年   64篇
  2013年   64篇
  2012年   73篇
  2011年   85篇
  2010年   57篇
  2009年   50篇
  2008年   72篇
  2007年   75篇
  2006年   71篇
  2005年   98篇
  2004年   83篇
  2003年   71篇
  2002年   60篇
  2001年   10篇
  2000年   10篇
  1999年   13篇
  1998年   11篇
  1997年   24篇
  1996年   10篇
  1995年   15篇
  1994年   13篇
  1993年   12篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1961年   1篇
排序方式: 共有1241条查询结果,搜索用时 15 毫秒
1.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
2.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
3.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
4.
5.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
6.
The genes coding ford-ribulose-1,5-bisphosphate carboxylase (RuBPCase) from an iron-oxidizing bacterium,Thiobacillus ferrooxidans, were cloned into anEscherichia coli plasmid, pUC18. The recombinant plasmid, termed pTR11, contained a 4.0-kb PstI fragment including the entire coding regions for both large and small subunits of RuBPCase.Escherichia coli carrying pTR11 did not show any CO2-fixing activity. However, a derivative plasmid with an appropriate deletion, which was placed under the control of atac promoter, conferred ribulose bisphosphate-dependent CO2-fixing activity on the host cell. Analysis of gel-filtration chromatography of the RuBPCase synthesized inE. coli revealed that it had a hexadecameric form like the native enzyme ofT. ferrooxidans.  相似文献   
7.
8.
The development of the eggs and larvae and minute tubercles on the skin surface ofParacheilognathus himantegus larvae were observed. The egg began to hatch approximately 68 hours after insemination and the larvae reached the free-swimming stage 23 days after hatching at water temperature of 22±1°C. The larval development and minute tubercles on the skin surface of this species were similar to those ofAcheilognathus lanceolata, A. limbata, A. signifer andTanakia tanago. However, the shape of the ripe eggs ofP. himantegus differed from those of the four species. As regards the shape of eggs, there was a common characteristic amongP. himantegus, Rhodeus uyekii andA. limbata from Korea. As regards larval development,P. himantegus had two characters also found inRhodeus. These facts seem to suggest thatP. himantegus is closely related toA. lanceolata, A. limbata, A. signifer andT. tanago but is more specialized than these four species, except forA. limbata from Korea.  相似文献   
9.
Abstract: Aromatase in the diencephalic neurons, the level of which increases transiently during the prenatal to neonatal period, has been suggested to be involved in control of sexual behavior and differentiation of the CNS. Effects of neurotransmitters on levels of aromatase mRNA in cultured neurons were investigated to determine factors regulating the developmental increase that occurs in level of fetal brain aromatase. The expression of aromatase in diencephalic neurons of fetal mice at embryonic day 13, cultured in vitro, was significantly affected by α1-adrenergic receptor ligands. Aromatase mRNA levels were higher in neurons treated with the α1-agonist phenylephrine than in control neurons, whereas prazosin, an α1-antagonist, suppressed this increase, and ligands for α2- or β-adrenergic receptors did not exert any influence. The profile of α1-adrenergic receptor subtypes during actual development in vivo suggested that the α1B subtype is in fact responsible for the signal transduction. Substance P, cholecystokinin, neurotensin, and brain natriuretic peptide also increased the level of expression along with phorbol 12-myristate 13-acetate and dibutyryl-cyclic GMP, whereas forskolin and dibutyryl-cyclic AMP caused a decrease. These data indicate that stimulation via α1 (possibly α1B)-adrenergic receptors, as well as receptors of specific neuropeptides, controls the expression of aromatase in embryonic day 13 diencephalic neurons through activation of protein kinase C or G. β-Adrenergic receptors would not appear to participate in the regulation, judging from their developmental profile, although cyclic AMP might be a suppressive second messenger.  相似文献   
10.
Persistent infections with mumps virus were established in several human lymphoid cells of T-cell origin (Molt-4, TALL-1, and CCRF-CEM) and human monocyte cells (U937 and THP-1). 2′,5′-Oligoadenylate synthetase (2–5AS) activity was demonstrated to be only slightly induced by interferon (IFN) or TPA (12-O-tetradecanoyl-phorbol-13-acetate) treatment in these cells. Treatment of the persistently infected cells with IFN or TPA did not stimulate an increase in the amount of synthetase mRNA. Induction of cell differentiation and augmentation of IFN production by TPA were demonstrated in U937 cells persistently infected with mumps virus (U937-MP). Similar results for IFN production were obtained from differentiated U937 cells. It is suggested that cell differentiation of U937 cells might be associated with the development of IFN inducibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号