首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3130篇
  免费   194篇
  2021年   24篇
  2020年   30篇
  2019年   33篇
  2018年   40篇
  2017年   35篇
  2016年   62篇
  2015年   103篇
  2014年   126篇
  2013年   167篇
  2012年   167篇
  2011年   174篇
  2010年   110篇
  2009年   101篇
  2008年   152篇
  2007年   177篇
  2006年   186篇
  2005年   181篇
  2004年   175篇
  2003年   149篇
  2002年   139篇
  2001年   84篇
  2000年   76篇
  1999年   80篇
  1998年   21篇
  1997年   40篇
  1996年   22篇
  1995年   24篇
  1994年   23篇
  1993年   24篇
  1992年   45篇
  1991年   38篇
  1990年   34篇
  1989年   39篇
  1988年   30篇
  1987年   27篇
  1986年   23篇
  1985年   28篇
  1984年   25篇
  1983年   24篇
  1982年   16篇
  1981年   20篇
  1979年   18篇
  1978年   21篇
  1977年   18篇
  1975年   19篇
  1974年   22篇
  1973年   18篇
  1972年   23篇
  1970年   15篇
  1966年   15篇
排序方式: 共有3324条查询结果,搜索用时 31 毫秒
1.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
2.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
3.
To explore the biological role of carbohydrate chains in the process of nerve cell differentiation, we carried out a characterization of the carbohydrate structure of glycoproteins by comparing conventional PC12 cells with variant cells (PC12D). In vitro metabolic labeling of cells with either [(3)H] glucosamine or [(3)H] threonine, together with tomato lectin staining, revealed that nerve growth factor (NGF) stimulation caused a decrease in the poly-N-acetyllactosamine synthesis of high-molecular-weight glycopeptides from PC12 cells. By comparison, the amount of glycopeptides with poly-N-acetyllactosamine from PC12D cells was already significantly low and it was not changed by NGF stimulation. By assaying the glycosyltransferases that participate in poly-N-acetyllactosamine synthesis, the decrease in the amount of the poly-N-acetyllactosamine in PC12D cells as well as NGF-stimulated PC12 cells could be accounted for by a reduction in the activity of poly-N-acetyllactosamine extension enzyme (GnT-i), because the amount of poly-N-acetyllactosamine in both cells precisely correlated with changes in GnT-i activity, whereas the activities of N-acetylglucosaminyltransferase V (GnT-V) and beta 1-4 galactosyltransferase remained unchanged. These results demonstrate that the decrease in poly-N-acetyllactosamine synthesis in PC12 cells occurred prior to neurite formation, whereas PC12D cells were insensitive to this effect. Next, we showed that GnT-i but not GnT-V catalyzed a rate-limiting reaction in the expression of poly-N-acetyllactosamine chains, especially in pheochromocytoma.  相似文献   
4.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
5.
6.
7.
8.
The effects of colchicine and its analogs on the carrageenin-induced footpad edema in rats were investigated. The anti-inflammatory effects of colchicine analogs were measured at 3 and 5 hr after the carrageenin injection. Colchicine, 1-demethylcolchicine and 3-demethylcolchicine markedly inhibited the carrageenin edema whereas 2-demethylcolchicine was much less active. Thiocolchicinoids, having a thiomethyl group at C-10 instead of a methoxy group, were considerably less potent. These results suggest that the presence of methoxy groups at C-2 and C-10 in colchicine is necessary to maintain anti-inflammatory activity. Inactivity of deacetylcolchicine indicates that substitution of the amino group at C-7 with electron withdrawing groups is also important. Significant inhibition of carrageenin edema and strong binding to tubulin in vitro were manifested by colchicine, 3-demethylcolchicine, N-butyryldeacetylcolchicine and colchifoline. On the other hand, N-carbethoxydeacetylcolchicine which did bind well to tubulin, did not show much effect on the carrageenin edema. These results suggest that the anti-inflammatory action of colchicinoids may not be regulated through the microtubule system.  相似文献   
9.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
10.
The interactions of actin filaments with actin-binding protein (filamin) and caldesmon under the influence of tropomyosin were studied in detail using falling-ball viscometry, binding assay and electron microscopy. Caldesmon decreased the binding constant of filamin with F-actin. In contrast, the maximum binding ability of filamin to F-actin was decreased by tropomyosin. The filamin-induced gelation of actin filaments was inhibited by caldesmon. Tropomyosin also inhibited this gelation. The effect of caldesmon became stronger under the influence of tropomyosin. Furthermore, both caldesmon and tropomyosin additionally decreased the filamin binding to F-actin. From these results, caldesmon and tropomyosin appeared to influence filamin binding to F-actin with different modes of actin. In addition, there was no sign of direct interactions between filamin, caldesmon and tropomyosin as judged from gel filtration. Under the influence of caldesmon and tropomyosin, calmodulin conferred Ca2+ sensitivity on the filamin-induced gelation of actin filaments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号