首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5015篇
  免费   415篇
  国内免费   4篇
  2021年   53篇
  2020年   41篇
  2019年   55篇
  2018年   55篇
  2017年   57篇
  2016年   100篇
  2015年   143篇
  2014年   192篇
  2013年   257篇
  2012年   294篇
  2011年   306篇
  2010年   300篇
  2009年   279篇
  2008年   284篇
  2007年   304篇
  2006年   261篇
  2005年   261篇
  2004年   259篇
  2003年   262篇
  2002年   235篇
  2001年   102篇
  2000年   76篇
  1999年   78篇
  1998年   68篇
  1997年   53篇
  1996年   46篇
  1995年   52篇
  1994年   49篇
  1993年   39篇
  1992年   42篇
  1991年   58篇
  1990年   38篇
  1989年   53篇
  1988年   45篇
  1987年   35篇
  1986年   41篇
  1985年   30篇
  1984年   57篇
  1983年   47篇
  1982年   23篇
  1981年   29篇
  1980年   28篇
  1979年   18篇
  1978年   30篇
  1977年   22篇
  1976年   21篇
  1975年   23篇
  1974年   24篇
  1973年   21篇
  1971年   18篇
排序方式: 共有5434条查询结果,搜索用时 15 毫秒
1.
2.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
3.
α/β barrels have an ill-defined origin. Evidence exists which favours their divergent evolution from a common ancestral barrel and convergent evolution to a stable fold. However, recent sequence and structural information for the flavin oxidase/dehydrogenase family of barrel enzymes indicate that sub-families of α/β barrels have evolved divergently. The modular fusion of barrel domains with core structures from other gene families has also contributed to the evolution of related but catalytically distinct enzyme molecules within each sub-family of the flavin oxidases/dehydrogenases. An analysis of the structures and sequences of the flavin oxidases/dehydrogenases has now enabled studies focusing on the evolutionary origins and modular assembly of this important family of proteins to be initiated.  相似文献   
4.
5.
6.
Aquatic macrophytes are one of the biological quality elements in the Water Framework Directive (WFD) for which status assessments must be defined. We tested two methods to classify macrophyte species and their response to eutrophication pressure: one based on percentiles of occurrence along a phosphorous gradient and another based on trophic ranking of species using Canonical Correspondence Analyses in the ranking procedure. The methods were tested at Europe-wide, regional and national scale as well as by alkalinity category, using 1,147 lakes from 12 European states. The grouping of species as sensitive, tolerant or indifferent to eutrophication was evaluated for some taxa, such as the sensitive Chara spp. and the large isoetids, by analysing the (non-linear) response curve along a phosphorous gradient. These thresholds revealed in these response curves can be used to set boundaries among different ecological status classes. In total 48 taxa out of 114 taxa were classified identically regardless of dataset or classification method. These taxa can be considered the most consistent and reliable indicators of sensitivity or tolerance to eutrophication at European scale. Although the general response of well known indicator species seems to hold, there are many species that were evaluated differently according to the database selection and classification methods. This hampers a Europe-wide comparison of classified species lists as used for the status assessment within the WFD implementation process.  相似文献   
7.
Signaling through the T cell antigen receptor (TCR) is important for the homeostasis of naïve and memory CD4+ T cells. The significance of TCR signaling in regulatory T (Treg) cells has not been systematically addressed. Using an Ox40-cre allele that is prominently expressed in Treg cells, and a conditional null allele of the gene encoding p56Lck, we have examined the importance of TCR signaling in Treg cells. Inactivation of p56Lck resulted in abnormal Treg homeostasis characterized by impaired turnover, preferential redistribution to the lymph nodes, loss of suppressive function, and striking changes in gene expression. Abnormal Treg cell homeostasis and function did not reflect the involvement of p56Lck in CD4 function because these effects were not observed when CD4 expression was inactivated by Ox40-cre.The results make clear multiple aspects of Treg cell homeostasis and phenotype that are dependent on a sustained capacity to signal through the TCR.  相似文献   
8.
Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel ‘head-to-head’ arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号