首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   37篇
  国内免费   1篇
  2023年   6篇
  2022年   9篇
  2021年   32篇
  2020年   18篇
  2019年   14篇
  2018年   45篇
  2017年   30篇
  2016年   48篇
  2015年   56篇
  2014年   41篇
  2013年   46篇
  2012年   68篇
  2011年   62篇
  2010年   28篇
  2009年   18篇
  2008年   16篇
  2007年   13篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
1.
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.  相似文献   
2.
3.
4.
5.
6.
7.
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.  相似文献   
8.
9.
Long-range transport in cells is achieved primarily through motor-based transport along a network of microtubule tracks. Targeted transport by kinesin motors can be correlated with posttranslational modifications (PTMs) of the tubulin subunits in specific microtubules. To directly examine the influence of specific PTMs on kinesin-1 motility, we generated tubulin subunits that were either enriched in or lacking acetylation of α-tubulin lysine 40 (K40) or detyrosination of the α-tubulin C-terminal tail. We show that K40 acetylation does not result in significant changes in kinesin-1’s landing rate or motility parameters (velocity and run length) across experimental conditions. In contrast, detyrosination causes a moderate increase in kinesin-1’s landing rate. The fact that the effects of detyrosination are dampened by prior K40 acetylation indicates that the combination of PTMs may be an important aspect of the functional output of microtubule heterogeneity. Importantly, our results indicate that the moderate influences that single PTMs have on kinesin-1 in vitro do not explain the strong correlation between specific PTMs and kinesin-1 transport in cells. Thus, additional mechanisms for regulating kinesin-1 transport in cells must be explored in future work.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号