首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2792篇
  免费   202篇
  2021年   26篇
  2020年   16篇
  2019年   15篇
  2018年   30篇
  2017年   21篇
  2016年   52篇
  2015年   77篇
  2014年   93篇
  2013年   192篇
  2012年   130篇
  2011年   142篇
  2010年   90篇
  2009年   88篇
  2008年   134篇
  2007年   159篇
  2006年   121篇
  2005年   126篇
  2004年   145篇
  2003年   146篇
  2002年   115篇
  2001年   110篇
  2000年   106篇
  1999年   87篇
  1998年   34篇
  1997年   28篇
  1996年   26篇
  1995年   20篇
  1994年   24篇
  1993年   32篇
  1992年   68篇
  1991年   56篇
  1990年   49篇
  1989年   43篇
  1988年   39篇
  1987年   44篇
  1986年   32篇
  1985年   38篇
  1984年   31篇
  1983年   22篇
  1982年   15篇
  1981年   21篇
  1980年   12篇
  1979年   15篇
  1978年   14篇
  1975年   8篇
  1973年   12篇
  1972年   11篇
  1971年   11篇
  1968年   10篇
  1967年   12篇
排序方式: 共有2994条查询结果,搜索用时 18 毫秒
1.
The alpha/beta‐hydrolases are a family of acid‐base‐nucleophile catalytic triad enzymes with a common fold, but using a wide variety of substrates, having different pH optima, catalyzing unique catalytic reactions and often showing improved chemical and thermo stability. The ABH enzymes are prime targets for protein engineering. Here, we have classified active sites from 51 representative members of 40 structural ABH fold families into eight distinct conserved geometries. We demonstrate the occurrence of a common structural motif, the catalytic acid zone, at the catalytic triad acid turn. We show that binding of an external ligand does not change the structure of the catalytic acid zone and both the ligand‐free and ligand‐bound forms of the protein belong to the same catalytic acid zone subgroup. We also show that the catalytic acid zone coordinates the position of the catalytic histidine loop directly above its plane, and consequently, fixes the catalytic histidine in a proper position near the catalytic acid. Finally, we demonstrate that the catalytic acid zone plays a key role in multi‐subunit complex formation in ABH enzymes, and is involved in interactions with other proteins. As a result, we speculate that each of the catalytic triad residues has its own supporting structural scaffold, similar to the catalytic acid zone, described above, which together form the extended catalytic triad motif. Each scaffold coordinates the function of its respective catalytic residue, and can even compensate for the loss of protein function, if the catalytic amino acid is mutated.  相似文献   
2.
3.
Carbon and nitrogen are essential elements for life. Glucose as a carbon source and glutamine as a nitrogen source are important nutrients for cell proliferation. About 100 years ago, it was discovered that cancer cells that have acquired unlimited proliferative capacity and undergone malignant evolution in their host manifest a cancer-specific remodeling of glucose metabolism (the Warburg effect). Only recently, however, was it shown that the metabolism of glutamine-derived nitrogen is substantially shifted from glutaminolysis to nucleotide biosynthesis during malignant progression of cancer—which might be referred to as a “second” Warburg effect. In this review, address the mechanism and relevance of this metabolic shift of glutamine-derived nitrogen in human cancer. We also examine the clinical potential of anticancer therapies that modulate the metabolic pathways of glutamine-derived nitrogen. This shift may be as important as the shift in carbon metabolism, which has long been known as the Warburg effect.  相似文献   
4.
5.
Light microscopic autoradiography was used to visualize the neuroanatomical distribution of nicotinic receptors in rat brain using a novel radioligand, [3H]methylcarbamylcholine (MCC). Specific [3H]MCC binding to slide-mounted tissue sections of rat brain was saturable, reversible and of high affinity. Data analysis revealed a single population of [3H]MCC binding sites with a Kd value of 1.8 nM and Bmax of 20.1 fmol/mg protein. Nicotinic agonists and antagonists competed for [3H]MCC binding sites in slide-mounted brain sections with much greater potency than muscarinic drugs. The rat brain areas containing the highest densities of [3H]MCC binding were in thalamic regions, the medial habenular nucleus and the superior colliculus. Moderate densities of [3H]MCC binding were seen over the anterior cingulate cortex, the nucleus accumbens, the zona compacta of substantia nigra and ventral tegmental area. Low densities of [3H]MCC binding were found in most other brain regions. These data suggest that [3H]MCC selectively labels central nicotinic receptors and that these receptors are concentrated in the thalamus, the medial habenular nucleus and the superior colliculus of the rat brain.  相似文献   
6.
7.
In several vascular inflammatory reactions (i.e. immunity and thrombosis) inflammatory mediators lead to the activation of vascular endothelial cells (EC). To date, a number of functional molecules induced on the surface of activated-EC have been identified. We report here that Globotetraosylceramide (Gb4), a glycosphingolipid expressed in EC, is a novel inducible molecule on EC activated by TNF-α. The cell surface expression of Gb4 is increased in a time-dependent manner under TNF-α stimulation, which shows distinct expression kinetics of major proteins induced by TNF-α on EC. MALDI-TOF-MS analysis revealed that the enhanced Gb4 predominantly contains C24:0 fatty acid in the ceramide moiety. Isolated caveolae/lipid raft-enriched detergent insoluble membrane domains in activated-EC predominantly contain this molecular species of Gb4. Gb4 containing C16:0 fatty acid in the ceramide moiety, which is known to constitute the major species of Gb4 in plasma, is also found as a major molecular species in EC. These observations indicate that Gb4, especially with very long fatty acid, is enhanced in EC during its inflammatory reaction, and suggest the potential utility of Gb4 as a biomarker for monitoring inflammation status of EC involving its related diseases.  相似文献   
8.
9.
Conchospore germlings of Porphyra yezoensis were stained with a fluorescent dye for DNA and observed with confocal laser scanning microscopy (CLSM). Relative DNA values of the germling nuclei were obtained by measuring fluorescence intensities of nuclear regions of the optically sliced specimens, using the mean value of the smallest blade cells as a reference of the genomic n value. Such quantification revealed that the nuclear DNA amounts of the one-cell, two-cell, and four-cell-stage germlings are approximately 4 × n, 2 × n, and n ∼2 × n values respectively; these values agreed well with the expected ones from the hypothesis that meiosis corresponds to the first successive cell divisions after the conchospore germination. These results are consistent with a previous study on cytogenetic analysis of the chimaera blade formation (Ohme and Miura 1988, Plant Sci 57:135–140) and not consistent with a recent microscopic study (Wang et al. 2006, Phycol Res 54:201–207) which proposed that the first meiotic division occurs at the conchospore formation and the second division at the germination.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号