首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4516篇
  免费   274篇
  国内免费   26篇
  2023年   79篇
  2022年   108篇
  2021年   339篇
  2020年   179篇
  2019年   196篇
  2018年   281篇
  2017年   173篇
  2016年   253篇
  2015年   301篇
  2014年   330篇
  2013年   374篇
  2012年   369篇
  2011年   312篇
  2010年   193篇
  2009年   174篇
  2008年   186篇
  2007年   163篇
  2006年   128篇
  2005年   114篇
  2004年   84篇
  2003年   74篇
  2002年   50篇
  2001年   22篇
  2000年   21篇
  1999年   25篇
  1998年   17篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   13篇
  1993年   13篇
  1992年   17篇
  1991年   16篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   13篇
  1986年   10篇
  1985年   10篇
  1983年   7篇
  1982年   11篇
  1980年   9篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   8篇
  1971年   6篇
  1970年   6篇
  1969年   12篇
  1968年   7篇
排序方式: 共有4816条查询结果,搜索用时 15 毫秒
1.
2.
Perspective texture synthesis has great significance in many fields like video editing, scene capturing etc., due to its ability to read and control global feature information. In this paper, we present a novel example-based, specifically energy optimization-based algorithm, to synthesize perspective textures. Energy optimization technique is a pixel-based approach, so it’s time-consuming. We improve it from two aspects with the purpose of achieving faster synthesis and high quality. Firstly, we change this pixel-based technique by replacing the pixel computation with a little patch. Secondly, we present a novel technique to accelerate searching nearest neighborhoods in energy optimization. Using k- means clustering technique to build a search tree to accelerate the search. Hence, we make use of principal component analysis (PCA) technique to reduce dimensions of input vectors. The high quality results prove that our approach is feasible. Besides, our proposed algorithm needs shorter time relative to other similar methods.  相似文献   
3.
Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme.  相似文献   
4.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

5.
The present research was conducted in district Jhang, Pakistan, to evaluate the concentration of metals/metalloids in soil and pumpkin (Cucurbita maxima) irrigated with domestic wastewater. Data revealed that the levels of metals and metalloids in soil samples from two different sites were below the safe limits except Cd, whereas, in the vegetable, the concentrations of As, Se, Ni, Mo, Pb, Mn, and Cu were above the safe limits. The levels of 12 metals and metalloids in the soil were ranged between 0.14 to 22.76 mg/kg at site-I and 0.16 to 22.13 mg/kg at site-II. The levels of these metals in the vegetable were found 0.35 to 61.13 mg/kg at site-I and 0.31 to 53.63 mg/kg at site-II. The transfer factor at both sites was highest for As and Co. The pollution load index recorded for Se, Cu, Cd, Mo, Pb, and Co was greater than 1. The daily intake of As, Mn, and Mo was above the oral reference dose, which reflects that the intake of pumpkin is not safe for the inhabitants of the selected sites. The control measures should be taken to phytoextract heavy metals and metalloids from polluted sites so as to reduce the health risks.  相似文献   
6.
7.
3-Oxoacid CoA-transferase, which catalyses the first committed step in the oxidation of ketone bodies, is uniquely regulated in developing rat brain. Changes in 3-oxoacid CoA-transferase activity in rat brain during the postnatal period are due to changes in the relative rate of synthesis of the enzyme. To study the regulation of this enzyme, we identified, with a specific polyclonal rabbit anti-(rat 3-oxoacid CoA-transferase), two positive cDNA clones (approx. 800 bp) in a lambda gtll expression library, constructed from poly(A)+ RNA from brains of 12-day-old rats. One of these clones (lambda CoA3) was subcloned into M13mp18 and subjected to further characterization. Labelled single-stranded probes prepared by primer extension of the M13mp18 recombinant hybridized to a 3.6 kb mRNA. Rat brain mRNA enriched by polysome immunoadsorption for a single protein of size 60 kDa which corresponds to the precursor form of 3-oxoacid CoA-transferase was also found to be similarly enriched for the hybridizable 3.6 kb mRNA complementary to lambda CoA3. Affinity-selected antibody to the lambda CoA3 fusion protein inhibited 3-oxoacid CoA-transferase activity present in rat brain mitochondrial extracts. The 3.6 kb mRNA for 3-oxoacid CoA-transferase was present in relative abundance in rat kidney and heart, to a lesser extent in suckling brain and mammary gland and negligible in the liver. The specific mRNA was also found to be 3-fold more abundant in the brain from 12-day-old rats as compared with 18-day-old foetuses and adult rats, corresponding to the enzyme activity and relative rate of synthesis profile during development. These data suggest that 3-oxoacid CoA-transferase enzyme activity is regulated at a pretranslational level.  相似文献   
8.
Phenol, p-cresol, and volatile fatty acids (VFA; acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids) were used as odor indicators of swine waste. Aeration of the waste allowed the indigenous microorganisms to grow and degrade these malodorous substances. The time required for degradation of these substances varied according to the waste used, and it was not necessarily related to their concentrations. Using a minimal medium which contained one of the malodorous compounds as sole carbon source, we have selected from swine waste microorganisms that can grow in the medium. The majority of these microorganisms were able to degrade the same substrate when inoculated in sterilized swine waste but with an efficiency varying from one strain to the other. None of these strains was able to degrade all malodorous substances studied. Within 6 days of incubation these selected strains degraded the following: Acinetobacter calcoaceticus, phenol and all VFA; Alcaligenes faecalis, p-cresol and all VFA; Corynebacterium glutamicum and Micrococcus sp., phenol, p-cresol, and acetic and propionic acids; Arthrobacter flavescens, all VFA. On a laboratory scale, the massive inoculation of swine waste with C. glutamicum or Micrococcus sp. accelerated degradation of the malodorous substances. However, this effect was not observed with all of the various swine wastes tested. These results suggest that an efficient deodorization process of various swine wastes could be developed at the farm level based on the aerobic indigenous microflora of each waste.  相似文献   
9.
Improper timing of artificial insemination with respect to ovulation is one of the major factors hampering the conception rate in buffalo. The present study was an attempt to relate physio-chemical changes in estrual mucus to subsequent pregnancy status in order to find their optimal values for determining the time for artificial insemination (AI). Serum estradiol, total protein and dry matter contents of estrual mucus were evaluated to predict the subsequent pregnancy in 36 buffalo during October 1988 to February 1989. Serum estradiol was determined by radioimmunoassay (RIA); spinnbarkeit, dry matter and total protein were determined by standard methods. Multivariate probit analyses were carried out to relate these variables to subsequent pregnancy status. Elasticity and protein concentration were significantly related to prediction probability of pregnancy status, and they predicted the pregnancy status 86% of the times correctly (P < 0.05). The probability of pregnant animals being correctly classified was 0.76, whereas the corresponding value for non-pregnant animals was 0.95. The present study demonstrated the possibility of using such a statistical model on mucus characteristics for determining proper AI time for better conception rates in Nili-Ravi water buffalo.  相似文献   
10.
Antisense oligonucleotides have the ability to inhibit individual gene expression in the potential treatment of cancer and viral diseases. However, the mechanism by which many oligonucleotide analogs enter cells to exert the desired effects is unknown. In this study, we have used phospholipid model membranes (liposomes) to examine further the mechanisms by which oligonucleotide analogs cross biological membranes. Permeation characteristics of 32P or fluorescent labelled methylphosphonate (MP-oligo), phosphorothioate (S-oligo), alternating methylphosphonate-phosphodiester (Alt-MP) and unmodified phosphodiester (D-oligo) oligodeoxynucleotides were studied using liposomal membranes. Efflux rates (t1/2 values) at 37 degrees C for oligonucleotides entrapped within liposomes ranged from 7-10 days for D-, S- and Alt-MP-oligos to about 4 days for MP-oligos. This suggests that cellular uptake of oligonucleotides by passive diffusion may be an unlikely mechanism, even for the more hydrophobic MP-oligos, as biological effects are observed over much shorter time periods. We also present data that suggest oligonucleotides are unlikely to traverse phospholipid bilayers by membrane destabilization. We show further that MP-oligos exhibit saturable binding (adsorption) to liposomal membranes with a dissociation constant (Kd) of around 20nM. Binding appears to be a simple interaction in which one molecule of oligonucleotide attaches to a single lipid site. In addition, we present water-octanol partition coefficient data which shows that uncharged 12-15 mer MP-oligos are 20-40 times more soluble in water than octanol; the low organic solubility is consistent with the slow permeation of MP-oligos across liposome membranes. These results are thought to have important implications for both the cellular transport and liposomal delivery of modified oligonucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号