首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1789篇
  免费   114篇
  国内免费   1篇
  2023年   8篇
  2022年   15篇
  2021年   53篇
  2020年   37篇
  2019年   66篇
  2018年   49篇
  2017年   54篇
  2016年   72篇
  2015年   109篇
  2014年   130篇
  2013年   135篇
  2012年   150篇
  2011年   118篇
  2010年   88篇
  2009年   69篇
  2008年   95篇
  2007年   82篇
  2006年   92篇
  2005年   69篇
  2004年   57篇
  2003年   48篇
  2002年   45篇
  2001年   42篇
  2000年   43篇
  1999年   32篇
  1998年   24篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   9篇
  1993年   4篇
  1992年   5篇
  1991年   13篇
  1990年   6篇
  1989年   2篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有1904条查询结果,搜索用时 46 毫秒
1.
Epigallocatechin gallate (EGCG), a bioactive ingredient of green tea, plays a protective role in the cardiovascular system. Homocysteine (Hcy) is a major risk factor for chronic kidney disease and cardiovascular disease. The present study aimed to investigate the role of EGCG in Hcy-induced proliferation of vascular smooth muscle cells (VSMCs) and its underlying mechanism. We also explored the roles of rennin-angiotensin system (RAS), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) in this process. Human aortic smooth muscle cells (HASMCs) were treated with different drugs for different periods. The proliferation rate of HASMCs was detected using the CCK-8 and BrdU labeling assays. The Western blot assay was used to determine the expression levels of angiotensin II type 1 receptor (AT-1R), ERK1/2, and p38 MAPK. Compared with the control group, the HASMCs treated with Hcy at different doses (100, 200, 500, and 1000 µM) showed significantly increased proliferation. Hcy increased the expression of AT-1R, whereas EGCG decreased the protein expression of AT-1R. Furthermore, we found that Hcy-induced expression of p-ERK1/2 and p-p38MAPK was dependent on AT-1R. Compared with Hcy (500 µM)-treated cells, EGCG (20 µM)-treated cells showed decreased proliferation as well as expression of AT-1R, p-ERK1/2, and p-p38MAPK. In addition, HASMC proliferation was suppressed by the addition of an AT-1R blocker (olmesartan), an ERK1/2 inhibitor (PD98059), and a p38MAPK inhibitor (SB202190). EGCG can inhibit AT-1R and affect ERK1/2 and p38MAPK signaling pathways, resulting in the decrease of VSMC proliferation induced by Hcy.  相似文献   
2.
3.
Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate.  相似文献   
4.
Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.  相似文献   
5.
Alternative energy sources have received increasing attention in recent years. The possibility of adding value to agricultural wastes, by producing biofuels and other products with economic value from lignocellulosic biomass by enzymatic hydrolysis, has been widely explored. Lignocellulosic biomass, as well as being an abundant residue, is a complex recalcitrant structure that requires a consortium of enzymes for its complete degradation. Pools of enzymes with different specificities acting together usually produce an increase in hydrolysis yield. Enzymatic cocktails have been widely studied due to their potential industrial application for the bioconversion of lignocellulosic biomass. This review presents an overview of enzymes required to degrade the plant cell wall, paying particular attention to the latest advances in enzymatic cocktail production and the main results obtained with cocktails used to degrade a variety of types of biomass, as well as some future perspectives within this field.  相似文献   
6.
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC) associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd) carrying sequences of amastigote surface protein-2 (rAdASP2) and trans-sialidase (rAdTS) T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax) using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi), when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFN)γ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi) and the boost (analysis at 180 and 230 dpi). Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28), CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO) levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells, preserved the number of IFNγ+ cells, increased the expression of IFNγ mRNA but reduced inducible NO synthase mRNA. Vaccine-based immunostimulation with rAd might offer a rational alternative for re-programming the immune response to preserve and, moreover, recover tissue injury in Chagas’ heart disease.  相似文献   
7.
8.
9.
mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A’s reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation.  相似文献   
10.
Accumulating evidence suggests that obesity and enhanced inflammatory reactions are predisposing conditions for developing colon cancer. Obesity is associated with high levels of circulating leptin. Leptin is an adipocytokine that is secreted by adipose tissue and modulates immune response and inflammation. Lipid droplets (LD) are organelles involved in lipid metabolism and production of inflammatory mediators, and increased numbers of LD were observed in human colon cancer. Leptin induces the formation of LD in macrophages in a PI3K/mTOR pathway-dependent manner. Moreover, the mTOR is a serine/threonine kinase that plays a key role in cellular growth and is frequently altered in tumors. We therefore investigated the role of leptin in the modulation of mTOR pathway and regulation of lipid metabolism and inflammatory phenotype in intestinal epithelial cells (IEC-6 cells). We show that leptin promotes a dose- and time-dependent enhancement of LD formation. The biogenesis of LD was accompanied by enhanced CXCL1/CINC-1, CCL2/MCP-1 and TGF-β production and increased COX-2 expression in these cells. We demonstrated that leptin-induced increased phosphorylation of STAT3 and AKT and a dose and time-dependent mTORC activation with enhanced phosphorilation of the downstream protein P70S6K protein. Pre-treatment with rapamycin significantly inhibited leptin effects in LD formation, COX-2 and TGF-β production in IEC-6 cells. Moreover, leptin was able to stimulate the proliferation of epithelial cells on a mTOR-dependent manner. We conclude that leptin regulates lipid metabolism, cytokine production and proliferation of intestinal cells through a mechanism largely dependent on activation of the mTOR pathway, thus suggesting that leptin-induced mTOR activation may contribute to the obesity-related enhanced susceptibility to colon carcinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号