首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   51篇
  2023年   3篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   15篇
  2014年   8篇
  2013年   14篇
  2012年   19篇
  2011年   18篇
  2010年   14篇
  2009年   5篇
  2008年   13篇
  2007年   11篇
  2006年   21篇
  2005年   17篇
  2004年   15篇
  2003年   10篇
  2002年   10篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   8篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1972年   2篇
  1971年   4篇
  1969年   2篇
  1967年   2篇
  1961年   2篇
  1948年   1篇
  1908年   1篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
1.
2.
3.
We performed classical molecular dynamics simulations of the ionic liquids (ILs) [dmim+][Cl?] and [emim+][NTf2?], confined in a model CMK-5 material, which consists of amorphous carbon nanopipes (ACNPs) arranged in a hexagonal array. We compare our findings against the behaviour of the same ILs inside an isolated ACNP (i.e. no IL adsorbed on the outer surface of the ACNP) and inside a model CMK-3 material (which is similar to CMK-5, but is formed by amorphous carbon nanorods). Our results indicate that the presence of IL adsorbed in the outer surface of an uncharged ACNP in CMK-5 affects the dynamics and the density of an IL adsorbed inside the ACNP and vice versa. ILs adsorbed outside the nanopipes in CMK-5 (i.e. with IL also adsorbed inside the nanopipes) have faster dynamics and remain closer to the carbon surfaces when compared to the same ILs adsorbed on CMK-3 materials. The trends are IL-specific: [dmim+][Cl?] has slower dynamics when inside an isolated ACNP than when inside the ACNPs in CMK-5, but in contrast, [emim+][NTf2?] moves faster when it is inside an isolated ACNP than when it is inside the ACNPs in CMK-5 (i.e. with IL adsorbed outside the nanopipes).  相似文献   
4.
AimThis research compared real-time measurements of alcohol consumption with retrospective accounts of alcohol consumption to examine possible discrepancies between, and contextual influences on, the different accounts.MethodBuilding on previous investigations, a specifically designed Smartphone technology was utilized to measure alcohol consumption and contextual influences in de facto real-time. Real-time data (a total of 10,560 data points relating to type and number of drinks and current social / environmental context) were compared with daily and weekly retrospective accounts of alcohol consumption.ResultsParticipants reported consuming more alcoholic drinks during real-time assessment than retrospectively. For daily accounts a higher number of drinks consumed in real-time was related to a higher discrepancy between real-time and retrospective accounts. This effect was found across all drink types but was not shaped by social and environmental contexts. Higher in-vivo alcohol consumption appeared to be related to a higher discrepancy in retrospectively reported weekly consumption for alcohol beverage types other than wine. When including contextual factors into the statistical models, being with two or more friends (as opposed to being alone) decreased the discrepancy between real-time and retrospective reports, whilst being in the pub (relative to being at home) was associated with greater discrepancies.ConclusionsOverall, retrospective accounts may underestimate the amount of actual, real-time alcohol consumed. Increased consumption may also exacerbate differences between real-time and retrospective accounts. Nonetheless, this is not a global effect as environmental and social contexts interact with the type of alcohol consumed and the time frame given for reporting (weekly vs. daily retrospective). A degree of caution therefore appears warranted with regards to the use of retrospective self-report methods of recording alcohol consumption. Whilst real-time sampling is unlikely to be completely error free, it may be better able to account for social and environmental influences on self-reported consumption.  相似文献   
5.
ObjectiveTo identify a novel class of inhibitors of fungal transporters involved in drug resistance.MethodsA series of structurally-related low molecular mass compounds was synthesized using combinatorial chemistry of a cyclobutene-dione (squarile) core. These compounds were screened for their inhibition of plasma membrane Major Facilitator Superfamily (MFS) and ATP-binding cassette (ABC) transporters responsible for efflux pump-mediated drug resistance in the fungal pathogen Candida albicans. Strains of Saccharomyces cerevisiae that specifically overexpress the MFS pump CaMdr1p or the ABC transporter CaCdr1p were used in primary screens and counterscreens, respectively, and to detect inhibition of glucose-dependent Nile Red efflux. Efflux pump inhibition, activity as pump substrates and antifungal activity against yeast and clinical isolates expressing efflux pumps were determined using agarose diffusion susceptibility assays and checkerboard liquid chemosensitization assays with fluconazole.ResultsThe screen identified five structurally-related compounds which inhibited CaMdr1p. Two compounds, A and B, specifically chemosensitized AD/CaMDR1 to FLC in a pH-dependent fashion and acted synergistically with FLC in checkerboard liquid MIC assays but compound B had limited solubility. Compound A chemosensitized to FLC the azole-resistant C. albicans strain FR2, which over-expresses CaMdr1p, inhibited Nile Red efflux mediated by CaMdr1p but not CaCdr1p and was not toxic to cultured human cells. A minor growth-inhibitory effect of B on AD/CaMDR1, but not on AD/CaCDR1 and AD/CaCDR2, indicated that compound B may be a substrate of these transporters. The related compound F was found to have antifungal activity against the three pump over-expressing strains used in the study.ConclusionsCompound A is a ‘first in class’ small molecule inhibitor of MFS efflux pump CaMdr1p.  相似文献   
6.
7.
Compared to younger adults, seniors (≥60 yrs) often adopt a highly regular lifestyle, perhaps as an adaptive response to age‐related changes in their sleep and circadian rhythms. At baseline, diary measures of lifestyle regularity (SRM‐5) were obtained from 104 seniors of three separate groups. Thirty‐three subjects were challenged by spousal bereavement or the need to care for a spouse at home with dementia (Challenged); 33 were suffering from formally diagnosed (DSM‐IV) insomnia (Insomnia); and 38 were healthy, well‐functioning older seniors in the second half of their eighth decade of life or later (Healthy Older). The objective of this study was to determine whether lifestyle regularity increased as a function of age within each of these three senior groups. Overall, age was significantly correlated with SRM‐5 (r=0.41, p<0.001), with the SRM score increasing by 0.67 units/decade. The same was true for the Challenged and Insomnia groups, which also showed a significant correlation between SRM and age (Challenged: r=0.48, p<0.01; Insomnia: r=0.36, p<0.05), though with a slightly faster rate of SRM increase in the Challenged (0.95 units/decade) than Insomnia (0.55 units/decade) group. Perhaps there was no correlation between age and SRM (r=0.07, n.s.) in the Healthy Older group due to the small age range, although this group did have a higher overall SRM score than the other two groups (p<0.01). The study thus confirmed that the previously observed increase in lifestyle regularity over the adult lifespan persists into later life. This may represent an adaptive behavioral response that might be used in future therapeutic approaches.  相似文献   
8.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   
9.
A variety of azobenzene compounds having bis-quaternary nitrogens have been shown to accelerate the hydrolysis by chymotrypsin of certain specific substrates by an allosteric mechanism. One of the most potent, 2,2'-bis[alpha-(benzyldimethylammonium)methyl]azobenzene dibromide (2,2'-QBzl) accelerated the hydrolysis of glutaryl-L-phenylalanine p-nitroanilide 40-fold at saturating concentration. Acceleration was by increasing kcat without altering Km. The hydrolysis of acetyl-L-tyrosine p-nitroanilide and acetyl-L-tyrosine anilide was also accelerated by Q-Bzl (25-fold and 1.8-fold respectively) while the hydrolysis of hemoglobin, azocoll and a number of esters was not affected. The inactivation of chymotrypsin by diphenylcarbamyl chloride and diphenylcarbamyl fluoride was accelerated by 2,2'-Q-Bzl. Reac;ivation in the presence of NH2OH was also accelerated, but in the absence of added nucleophile (i.e. of NH20H) no increase in rate was detectable. An allosteric effector was covalently attached to chymotrypsinogen A by reaction with 2,2'-bis[alpha-(o-bromomethylbenzyldimethylammonium)methyl]azobenezene dibromide. The product, when converted to active enzyme, was about 4 times more active than chymotrypsin as a result of an increase in kcat of hydrolysis; Km was unaffected. The mechanism of the allosteric acceleration process is not known but, because for all of the substrates affected acylation of the enzyme is rate-limitimg, it is tentatively suggested that the effectors facilitate proton transfer to the leaving group by an inductive effect on the 'charge relay system'. Spectral studies indicate that the allosteric site is a portion of the enzyme with a polarity near that of water, possibly on the outside surface of the enzyme molecule.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号