首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   16篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   13篇
  2013年   21篇
  2012年   20篇
  2011年   20篇
  2010年   6篇
  2009年   11篇
  2008年   23篇
  2007年   21篇
  2006年   18篇
  2005年   15篇
  2004年   30篇
  2003年   10篇
  2002年   22篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   12篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   8篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有320条查询结果,搜索用时 107 毫秒
1.
Epileptic activity is generally induced in experimental models by local application of epileptogenic drugs, including pentylenetetrazol (PTZ), widely used on both vertebrate and invertebrate neurons. Despite the high prevalence of this neurological disorder and the extensive research on it, the cellular and molecular mechanisms underlying epileptogenesis still remain unclear. In this work, we examined PTZ-induced neuronal changes in Helix monosynaptic circuits formed in vitro, as a simpler experimental model to investigate the effects of epileptiform activity on both basal release and post-tetanic potentiation (PTP), a form of short-term plasticity. We observed a significant enhancement of basal synaptic strength, with kinetics resembling those of previously described use-dependent forms of plasticity, determined by changes in estimated quantal parameters, such as the readily releasable pool and the release probability. Moreover, these neurons exhibited a strong reduction in PTP expression and in its decay time constant, suggesting an impairment in the dynamic reorganization of synaptic vesicle pools following prolonged stimulation of synaptic transmission. In order to explain this imbalance, we determined whether epileptic activity is related to the phosphorylation level of synapsin, which is known to modulate synaptic plasticity. Using western blot and immunocytochemical staining we found a PTZ-dependent increase in synapsin phosphorylation at both PKA/CaMKI/IV and MAPK/Erk sites, both of which are important for modulating synaptic plasticity. Taken together, our findings suggest that prolonged epileptiform activity leads to an increase in the synapsin phosphorylation status, thereby contributing to an alteration of synaptic strength in both basal condition and tetanus-induced potentiation.  相似文献   
2.
Professional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane‐bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram‐positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans. The possession of a virulence plasmid allows them to subvert host defence mechanisms and to multiply in macrophages. Here, we show that the plasmid‐encoded and secreted virulence‐associated protein A (VapA) participates in exclusion of the proton‐pumping vacuolar‐ATPase complex from phagosomes and causes membrane permeabilisation, thus contributing to a pH‐neutral phagosome lumen. Using fluorescence and electron microscopy, we show that VapA is also transferred from phagosomes to lysosomes where it permeabilises the limiting membranes for small ions such as protons. This permeabilisation process is different from that of known membrane pore formers as revealed by experiments with artificial lipid bilayers. We demonstrate that, at 24 hr of infection, virulent Requi is contained in a vacuole, which is enriched in lysosome material, yet possesses a pH of 7.2 whereas phagosomes containing a vapA deletion mutant have a pH of 5.8 and those with virulence plasmid‐less sister strains have a pH of 5.2. Experimentally neutralising the macrophage endocytic system allows avirulent Requi to multiply. This observation is mirrored in the fact that virulent and avirulent Requi multiply well in extracts of purified lysosomes at pH 7.2 but not at pH 5.1. Together these data indicate that the major function of VapA is to generate a pH‐neutral and hence growth‐promoting intracellular niche. VapA represents a new type of Gram‐positive virulence factor by trafficking from one subcellular compartment to another, affecting membrane permeability, excluding proton‐pumping ATPase, and consequently disarming host defences.  相似文献   
3.
4.
We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down‐revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr?1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr?1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr?1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.  相似文献   
5.
The first step in the specific uptake of iron via siderophores in Gram-negative bacteria is the recognition and binding of a ferric siderophore by its cognate receptor. We investigated the molecular basis of this event through structural and biochemical approaches. FpvA, the pyoverdine–Fe transporter from Pseudomonas aeruginosa ATCC 15692 (PAO1 strain), is able to transport ferric–pyoverdines originating from other species, whereas most fluorescent pseudomonads are only able to use the one they produce among the more than 100 known different pyoverdines. We solved the structure of FpvA bound to non-cognate pyoverdines of high- or low-affinity and found a close correlation between receptor–ligand structure and the measured affinities. The structure of the first amino acid residues of the pyoverdine chain distinguished the high- and low-affinity binders while the C-terminal portion of the pyoverdines, often cyclic, does not appear to contribute extensively to the interaction between the siderophore and its transporter. The specificity of the ferric–pyoverdine binding site of FpvA is conferred by the structural elements common to all ferric–pyoverdines, i.e. the chromophore, iron, and its chelating groups.  相似文献   
6.
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the QO site of complex III.  相似文献   
7.
We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs) was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na+K+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5)% and (13±5)%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative “lab-on-a-chip” platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.  相似文献   
8.
9.
Circulating hematopoietic progenitor cells in runners.   总被引:1,自引:0,他引:1  
Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 +/- 13.5 (SD) yr, training: 93.8 +/- 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 +/- 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34(+) cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.  相似文献   
10.
Musashi comprises an evolutionarily conserved family of RNA‐binding proteins (RBP) that regulate cell fate decisions during embryonic development and play key roles in the maintenance of self‐renewal and differentiation of stem cells and adult tissues. More recently, several studies have shown that any dysregulation of MSI1 and MSI2 can lead to cellular dysfunctions promoting tissue instability and tumorigenesis. Moreover, several reports have characterized many molecular interactions between members of the Musashi family with ligands and receptors of the signaling pathways responsible for controlling normal embryonic development: Notch, Transforming Growth Factor Beta (TGF‐β), Wingless (Wnt) and Hedgehog Signaling (Hh); all of which, when altered, are strongly associated with cancer onset and progression, especially in pediatric tumors. In this context, the present review aims to compile possible cross‐talks between Musashi proteins and members of the above cited molecular pathways for which dysregulation plays important roles during carcinogenesis and may be modulated by these RBP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号