首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   17篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   9篇
  2010年   17篇
  2009年   7篇
  2008年   13篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1995年   5篇
  1993年   3篇
  1991年   2篇
  1988年   4篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   2篇
  1974年   5篇
  1973年   9篇
  1972年   4篇
  1971年   6篇
  1970年   4篇
  1969年   2篇
  1959年   3篇
  1958年   3篇
  1957年   2篇
  1956年   4篇
  1954年   5篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   2篇
  1947年   1篇
  1946年   1篇
  1944年   1篇
  1937年   1篇
  1931年   1篇
  1927年   1篇
排序方式: 共有237条查询结果,搜索用时 171 毫秒
1.
A transition in the temperature dependences of Ca2+ accumulation and ATPase activity occurs at 20 ° C in Sarcoplasmic reticulum membranes. The transition is characterized by an abrupt change in the activation energies for the cation transport process and the associated enzyme activities. The difference in activation energies below and above 20 °C appears to be due to changes in the entropy of activation rather than in the free energy of activation. Also, the temperature dependences of spectral parameters of lipophilic spin-labeled probes and protein-bound spin labels exhibit different behaviors on either side of this temperature. Above 20 °C the lipid matrix probed by the labels exhibits a large increase in molecular motion and a decrease in the apparent ordering of lipid alkyl chains. In addition, labels covalently bound to enzymic reactive sites indicate that the motion of protein side-chains is sensitive to this transition. The results are consistent with an order-disorder transition involving the lipid alkyl chains of the Sarcoplasmic membrane, and with a model in which molecular motion, Ca2+ transport and enzyme activity are limited by local viscosity of hydrophobic regions at temperatures below the transition.Another modification of the Sarcoplasmic reticulum membrane occurs between 37 and 40 °C. It appears that at this temperature the processes governing Ca2+ accumulation and ATPase activity are uncoupled, and Ca2+ accumulation is inhibited, while ATPase activity and passive Ca2+ efflux proceed at rapid rates. Parallel transitions of spectroscopic parameters originating from spin labels, covalently bound to the Sarcoplasmic reticulum ATPase, indicate that the uncoupling is due to a thermally-induced protein conformational change.  相似文献   
2.
The repulsive pressure between filaments in the lattice of skinned rabbit and frog striated muscle in rigor has been measured as a function of interfilament spacing, using the osmotic pressure generated by solutions of large, uncharged polymeric molecules (dextran and polyvinylpyrrolidone). The pressure/spacing measurements have been compared with theoretically derived curves for electrostatic pressure. In both muscles, the major part of the experimental curves (100-2,000 torr) lies in the same region as the electrostatic pressure curves, providing that a thick filament charge diameter of approximately 30 nm in rabbit and approximately 26 nm in frog is assumed. In chemically skinned or glycerol-extracted rabbit muscle the fit is good; in chemically skinned frog sartorius and semitendinosus muscle the fit is poor, particularly at lower pressures where a greater spacing is observed than expected on theoretical grounds. The charge diameter is much larger than the generally accepted value for thick filament backbone diameter. This may be because electron microscope results have underestimated the amount of filament shrinkage during sample preparation, or because most of the filament charge is located at some distance from the backbone surface, e.g., on HMM-S2. Decreasing the ionic strength of the external solution, changing the pH, and varying the sarcomere length all give pressure/spacing changes similar to those expected from electrostatic pressure calculations. We conclude that over most of the external pressure range studied, repulsive pressure in the lattice is predominantly electrostatic.  相似文献   
3.
4.
The concepts of meridians and acupoints are critical to traditional Chinese medicine but are met with skepticism in Western medicine. Empirical validation of these concepts is in its beginning stages and still hampered by problems with measurement. A promising avenue and foundation for validity testing is the demonstration that acupoint activity can be reliably measured via determination of electrical resistance at well-defined body surface points. In this article, efforts are described to maximize measurement reliability; we tested a variety of protocols to determine which method of data aggregation is associated with maximal reliability. Twenty-one healthy individuals were subjected to 5 repeated measurement cycles to test the predicted increase in reliability with increasing number of aggregated measurements. Reliability, defined as internal consistency, was indeed highest for 5 measurements (mean alpha = .88). Even the aggregate of only three measures was quite reliable (alpha = .84). Reliability for measuring acupoints on the left side of the body was roughly .05 higher than on the right side. Consistent with previous literature, we conclude that with repeated measures the reliability of electrical resistance measurements at acupoints is high and that a strong foundation for validation research is now laid.  相似文献   
5.
6.
7.
8.
9.
10.
Rhodopsin, the pigment of the retinal rods, can be bleached either by light or by high temperature. Earlier work had shown that when white light is used the bleaching rate does not depend on temperature, and so must be independent of the internal energy of the molecule. On the other hand thermal bleaching in the dark has a high temperature dependence from which one can calculate that the reaction has an apparent activation energy of 44 kg. cal. per mole. It has now been shown that the bleaching rate of rhodopsin becomes temperature-dependent in red light, indicating that light and heat cooperate in activating the molecule. Apparently thermal energy is needed for bleaching at long wave lengths where the quanta are not sufficiently energy-rich to bring about bleaching by themselves. The temperature dependence appears at 590 mµ. This is the longest wave length at which bleaching by light proceeds without thermal activation, and corresponds to a quantum energy of 48.5 kg. cal. per mole. This value of the minimum energy to bleach rhodopsin by light alone is in agreement with the activation energy of thermal bleaching in the dark. At wave lengths between 590 and 750 mµ, the longest wave length at which the bleaching rate was fast enough to study, the sum of the quantum energy and of the activation energy calculated from the temperature coefficients remains between 44 and 48.5 kg. cal. This result shows that in red light the energy deficit of the quanta can be made up by a contribution of thermal energy from the internal degrees of freedom of the rhodopsin molecule. The absorption spectrum of rhodopsin, which is not markedly temperature-dependent at shorter wave lengths, also becomes temperature-dependent in red light of wave lengths longer than about 570 to 590 mµ. The temperature dependence of the bleaching rate is at least partly accounted for by the temperature coefficient of absorption. There is some evidence that the temperature coefficient of bleaching is somewhat greater than the temperature coefficient of absorption at wave lengths longer than 590 mmicro;. This means that the thermal energy of the molecule is a more critical factor in bleaching than in absorption. It shows that some of the molecules which absorb energy-deficient quanta of red light are unable to supply the thermal component of the activation energy needed for bleaching, so bringing about a fall in the quantum efficiency. The experiments show that there is a gradual transition between the activation of rhodopsin by light and the activation by internal energy. It is suggested that energy can move freely between the prosthetic group and the protein moiety of the molecule. In this way a part of the large amount of energy in the internal degrees of freedom of rhodopsin could become available to assist in thermal activation. Assuming that the minimum energy required for bleaching is 48.5 kg. cal., an equation familiar in the study of unimolecular reaction has been used to estimate the number of internal degrees of freedom, n, involved in supplying the thermal component of the activation energy when rhodopsin is bleached in red light. It was found that n increases from 2 at 590 mµ to a minimum value of 15 at 750 mµ. One wonders what value n has at 1050 mµ, where vision still persists, and where rhodopsin molecules may supply some 16 kg. cal. of thermal energy per mole in order to make up for the energy deficit of the quanta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号