首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3523篇
  免费   304篇
  国内免费   2篇
  2023年   18篇
  2022年   13篇
  2021年   57篇
  2020年   43篇
  2019年   48篇
  2018年   63篇
  2017年   52篇
  2016年   100篇
  2015年   157篇
  2014年   170篇
  2013年   227篇
  2012年   257篇
  2011年   273篇
  2010年   189篇
  2009年   184篇
  2008年   248篇
  2007年   235篇
  2006年   203篇
  2005年   207篇
  2004年   215篇
  2003年   172篇
  2002年   184篇
  2001年   62篇
  2000年   35篇
  1999年   39篇
  1998年   35篇
  1997年   33篇
  1996年   21篇
  1995年   24篇
  1994年   15篇
  1993年   20篇
  1992年   10篇
  1991年   17篇
  1990年   13篇
  1989年   10篇
  1988年   16篇
  1987年   11篇
  1986年   9篇
  1985年   14篇
  1984年   9篇
  1983年   15篇
  1982年   18篇
  1981年   14篇
  1980年   4篇
  1979年   9篇
  1978年   9篇
  1977年   9篇
  1976年   9篇
  1973年   4篇
  1968年   4篇
排序方式: 共有3829条查询结果,搜索用时 171 毫秒
1.
2.
The influence of both predator and prey size on the shift from a pulling to a drilling predatory response was examined in the intertidal octopus Octopus dierythraeus, using an experimental program. Additionally, selective drilling, where particular regions of the prey are targeted, was examined for a variety of bivalve and gastropod prey. O. dierythraeus always initially attempted to pull bivalves apart. Shells that were eventually drilled were always subjected to significantly more pulling attempts than those that could be pulled apart, indicating that octopus are willing to expend more energy to access the flesh quickly. There was no defined threshold where bivalve size caused an octopus to switch from a pulling to a drilling response. Instead, there was a broad size range where the octopus could adopt either handling method and it varied for each individual. Octopus may only able to pull open bivalves before the molecular ratchet or ‘catch’ mechanism that many bivalves possess is engaged. This might explain the lack of a relationship between either octopus or bivalve size and the success of pulling, as it is likely that when the bivalves were presented to individual octopus they were either setting the ‘catch’ mechanism, or had already engaged it. O. dierythraeus demonstrated selective drilling on a variety of molluscan prey, with penetration sites differing between prey species. O. dierythraeus targeted the valve periphery, which was the thinnest part of the shell, therefore minimizing handling time. O. dierythraeus always drilled gastropods, but did not target the thinnest regions of the shells, with drill site varying according to the morphology of the prey. Elongate species with pronounced aperture lips were drilled in the apical region, close to the columella on the side of the opercula whereas nonelongate species were drilled immediately above the aperture. The location of drilling sites may represent a trade-off between targeting the most effective places to inject paralyzing secretions and the mechanically simplest places to drill.  相似文献   
3.
4.
5.
Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.  相似文献   
6.
7.
Letters     
Kit  Kovacs  Mike  Hammill 《Marine Mammal Science》1996,12(1):161-116
  相似文献   
8.
Although endolysosomal trafficking is well defined, how it is regulated and coordinates with cellular metabolism is unclear. To identify genes governing endolysosomal dynamics, we conducted a global fluorescence-based screen to reveal endomembrane effector genes. Screening implicated Phox (PX) domain–containing protein Mdm1 in endomembrane dynamics. Surprisingly, we demonstrate that Mdm1 is a novel interorganelle tethering protein that localizes to endoplasmic reticulum (ER)–vacuole/lysosome membrane contact sites (MCSs). We show that Mdm1 is ER anchored and contacts the vacuole surface in trans via its lipid-binding PX domain. Strikingly, overexpression of Mdm1 induced ER–vacuole hypertethering, underscoring its role as an interorganelle tether. We also show that Mdm1 and its paralogue Ydr179w-a (named Nvj3 in this study) localize to ER–vacuole MCSs independently of established tether Nvj1. Finally, we find that Mdm1 truncations analogous to neurological disease–associated SNX14 alleles fail to tether the ER and vacuole and perturb sphingolipid metabolism. Our work suggests that human Mdm1 homologues may play previously unappreciated roles in interorganelle communication and lipid metabolism.  相似文献   
9.
10.
Salivation to food cues is typically explained in terms of mere stimulus-response links. However, food cues seem to especially increase salivation when food is attractive, suggesting a more complex psychological process. Adopting a grounded cognition perspective, we suggest that perceiving a food triggers simulations of consuming it, especially when attractive. These simulations then induce salivation, which effectively prepares the body for eating the food. In two experiments, we systematically examined the role of simulations on salivation to food cues. As stimuli, both experiments used an attractive, a neutral, and a sour food, as well as a non-food control object. In Experiment 1, participants were instructed to simulate eating every object they would be exposed to. We then exposed them to each object separately. Salivation was assessed by having participants spit their saliva into a cup after one minute of exposure. In Experiment 2, we instructed half of participants to simulate eating each object, and half to merely look at them, while measuring salivation as in Experiment 1. Afterwards, participants rated their simulations and desire to eat for each object separately. As predicted, foods increased salivation compared to the non-food control object, especially when they were attractive or sour (Exp. 1 and 2). Importantly, attractive and sour foods especially increased salivation when instructed to simulate (Exp. 2). These findings suggest that consumption simulations play an important role in inducing salivary responses to food cues. We discuss directions for future research as well as the role of simulations for other appetitive processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号