首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7559篇
  免费   668篇
  国内免费   3篇
  2021年   139篇
  2020年   91篇
  2019年   114篇
  2018年   143篇
  2017年   117篇
  2016年   214篇
  2015年   278篇
  2014年   330篇
  2013年   386篇
  2012年   570篇
  2011年   500篇
  2010年   354篇
  2009年   275篇
  2008年   397篇
  2007年   387篇
  2006年   390篇
  2005年   308篇
  2004年   344篇
  2003年   298篇
  2002年   309篇
  2001年   115篇
  2000年   118篇
  1999年   127篇
  1998年   86篇
  1997年   77篇
  1996年   63篇
  1995年   79篇
  1994年   60篇
  1993年   59篇
  1992年   77篇
  1991年   82篇
  1990年   90篇
  1989年   75篇
  1988年   65篇
  1987年   62篇
  1986年   70篇
  1985年   70篇
  1984年   52篇
  1983年   44篇
  1982年   31篇
  1981年   38篇
  1980年   49篇
  1979年   56篇
  1978年   38篇
  1977年   31篇
  1976年   34篇
  1975年   48篇
  1974年   32篇
  1973年   46篇
  1972年   37篇
排序方式: 共有8230条查询结果,搜索用时 106 毫秒
1.
An unusual RNA molecule encoded by the Bacillus subtilis bacteriophage phi 29 is a structural component of the viral prohead and is required for the ATP-dependent packaging of DNA. Here we report a model of secondary structure for this prohead RNA developed from a phylogenetic analysis of the primary sequences of prohead RNAs of related phages. Twenty-nine phages related to phi 29 were found to produce prohead RNAs. These RNAs were analyzed by their ability to replace phi 29 RNA in in vitro phage assembly, by Northern blot hybridization with a probe complementary to phi 29 RNA, and by partial and complete sequence analyses. These analyses revealed four quite different sequences ranging in length from 161 to 174 residues. The secondary structure deduced from these sequences, in agreement with earlier observations, indicated that prohead RNA is organized into two domains. The larger 5'-domain (Domain I) is composed of 113-117 residues and contains four helices. Three of these helices appear to be organized into a central stem that is interrupted by two unpaired loops and the fourth helix and loop. The smaller 3'-domain (Domain II) is composed of 40-44 residues and consists of two helices. Domains I and II are separated by 8-13 unpaired residues. Nuclease cleavage occurs readily in this single-stranded joining region, and this cleavage allows the subsequent separation of the two RNA domains. The separated Domain I is fully active in DNA packaging in vitro. The functional significance and biological role of Domain II are unknown. The phylogenetic secondary structure model provides a basis for further analysis of the role of this RNA in bacteriophage morphogenesis.  相似文献   
2.
3.
4.
Human noroviruses (HuNoV) are a major cause of nonbacterial gastroenteritis worldwide, yet details of the life cycle and replication of HuNoV are relatively unknown due to the lack of an efficient cell culture system. Studies with murine norovirus (MNV), which can be propagated in permissive cells, have begun to probe different aspects of the norovirus life cycle; however, our understanding of the specific functions of the viral proteins lags far behind that of other RNA viruses. Genome-wide functional profiling by insertional mutagenesis can reveal protein domains essential for replication and can lead to generation of tagged viruses, which has not yet been achieved for noroviruses. Here, transposon-mediated insertional mutagenesis was used to create 5 libraries of mutagenized MNV infectious clones, each containing a 15-nucleotide sequence randomly inserted within a defined region of the genome. Infectious virus was recovered from each library and was subsequently passaged in cell culture to determine the effect of each insertion by insertion-specific fluorescent PCR profiling. Genome-wide profiling of over 2,000 insertions revealed essential protein domains and confirmed known functional motifs. As validation, several insertion sites were introduced into a wild-type clone, successfully allowing the recovery of infectious virus. Screening of a number of reporter proteins and epitope tags led to the generation of the first infectious epitope-tagged noroviruses carrying the FLAG epitope tag in either NS4 or VP2. Subsequent work confirmed that epitope-tagged fully infectious noroviruses may be of use in the dissection of the molecular interactions that occur within the viral replication complex.  相似文献   
5.
6.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M60100. Clone pL33EA is available upon request.  相似文献   
7.
In an effort to reduce feed costs, many pork producers have increased their use of coproducts of biofuel production in commercial pig diets, including increased feeding of distiller’s dried grains with solubles (DDGS). The inclusion of DDGS increases the insoluble fiber content in the ration, which has the potential to impact the colonic microbiota considerably as the large intestine contains a dynamic microenvironment with tremendous interplay between microorganisms. Any alteration to the physical or chemical properties of the colonic contents has the potential to impact the resident bacterial population and potentially favor or inhibit the establishment of pathogenic species. In the present study, colonic contents collected at necropsy from pigs fed either 30% or no DDGS were analyzed to examine the relative abundance of bacterial taxa associated with feeding this ingredient. No difference in alpha diversity (richness) was detected between diet groups. However, the beta diversity was significantly different between groups with feeding of DDGS being associated with a decreased Firmicutes:Bacteriodetes ratio (P = .004) and a significantly lower abundance of Lactobacillus spp. (P = .016). Predictive functional profiling of the microbiota revealed more predicted genes associated with carbohydrate metabolism, protein digestion, and degradation of glycans in the microbiota of pigs fed DDGS. Taken together, these findings confirm that alterations in dietary insoluble fiber significantly alter the colonic microbial profile of pigs and suggest the resultant microbiome may predispose to the development of colitis.  相似文献   
8.
The genetic diversity at the ELA DQβ locus was investigated using polymerase chain reaction and DNA sequencing. Based upon serological methods 16 class II homozygous animals were selected and their genomic DNA was used. A DQβ gene from an equine cDNA library was also sequenced. Our methology and the similarity between the genomic and the cDNA sequences suggest that the studied locus is expressed on equine lymphocytes. In the predicted amino acid sequence the most extensive variation is located at residues 56–60. The pattern of these five amino acids is strongly correlated to the serological ELA class II specificities (W13, W22, W23, Be200). The alleles corresponding to the W23 specificity are the most divergent among the equine DQβ alleles and also from other mammalian DQβ sequences.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号