首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   7篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2007年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1968年   3篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
  1953年   2篇
  1949年   1篇
  1948年   1篇
  1946年   1篇
  1942年   2篇
  1941年   1篇
  1938年   3篇
  1937年   1篇
  1936年   2篇
  1935年   1篇
  1934年   1篇
  1932年   1篇
排序方式: 共有97条查询结果,搜索用时 234 毫秒
1.
Facultative CAM plants such as Mesembryanthemum crystallinum(ice plant) possess C3 metabolism when unstressed but developCAM under water or salt stress. When ice plants shift from C3metabolism to CAM, their stomata remain closed during the dayand open at night. Recent studies have shown that the stomatalresponse of ice plants in the C3 mode depends solely on theguard cell response to blue light. Recent evidence for a possiblerole of the xanthophyll, zeaxanthin in blue light photoreceptionof guard cells led to the question of whether changes in theregulation of the xanthophyll cycle in guard cells parallelthe shift from diurnal to nocturnal stomatal opening associatedwith CAM induction. In the present study, light-dependent stomatalopening and the operation of the xanthophyll cycle were characterizedin guard cells isolated from ice plants shifting from C3 metabolismto CAM. Stomata in epidermis detached from leaves with C3 metabolismopened in response to white light and blue light, but they didnot open in response to red light. Guard cells from these leavesshowed light-dependent conversion of violaxan-thin to zeaxanthin.Induction of CAM by NaCI abolished both white light- and bluelight-stimulated stomatal opening and light-dependent zeaxanthinformation. When guard cells isolated from leaves with CAM weretreated with 100 mM ascorbate, pH 5.0 for 1 h in darkness, guardcell zeaxanthin content increased at rates equal to or higherthan those stimulated by light in guard cells from leaves inthe C3 mode. The ascorbate effect indicates that chloroplastsin guard cells from leaves with CAM retain their competenceto operate the xanthophyll cycle, but that zeaxanthin formationdoes not take place in the light. The data suggest that inhibitionof light-dependent zeaxanthin formation in guard cells mightbe one of the regulatory steps mediating the shift from diurnalto nocturnal stomatal opening typical of plants with CAM. (Received July 5, 1996; Accepted December 12, 1996)  相似文献   
2.
Changes in the structural organization of the funiculus of Phaseolusvulgaris were correlated with mitochondrial respiration rates,including both cytochrome and alternative pathway activitiesand seed weight during development of the seed. After fertilization,vascular elements are still differentiating within the funiculus.The central core of the funiculus consists mainly of procambialcells together with a few mature xylem and phloem elements.As the seed gradually matures, more vascular elements beginto appear. Procambial cells in the upper region of the funiculusadjacent to the pod differentiate and result in xylem and phloemappearing as a convoluted, intertwining network of strands.In the lower part of the funiculus adjacent to the seed, fewervascular elements are present and they organize into a smallbundle prior to entering the seed. The funiculus is fully developedat the cotyledon stage judging from the size of the funiculusand the organization of the vascular tissues. At the early maturationstage, the seed begins to enlarge in both size and weight. Correlatedwith development of the funiculus tissue is a gradual decreasein total rates of respiration. Inhibitor studies using potassiumcyanide and/or salicylhydroxamic acid show that the CN-insensitive,or alternative pathway is the predominant route of electrontransport in funiculus mitochondria during the early stagesof development. This pathway declines in activity with age whereuponcytochrome pathway activity accounts for all of the respirationby the time vascular tissues are mature and the seed is rapidlyexpanding.Copyright 1994, 1999 Academic Press Funiculus, vascular tissue, cytochrome, respiratory pathway, alternative respiratory pathway, Phaseolus vulgaris  相似文献   
3.

Background  

Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains.  相似文献   
4.
5.
6.
The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1-S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34-SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34-SCFCdc4 ubiquitination activity and cell cycle progression.  相似文献   
7.
A series of 2-methyl-5-nitrobenzenesulfonohydrazides were prepared and evaluated as inhibitors of PI3K. An isoquinoline derivative shows good selectivity for the p110α isoform over p110β and p110δ, and also demonstrates good in vitro activity in a cell proliferation assay. Molecular modelling provides a rationalisation for the observed SAR.  相似文献   
8.

Background

Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC.

Methodology/Principal Findings

We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies.

Conclusions/Significance

In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1.  相似文献   
9.
Cell cycle progression in eukaryotes is mediated by phosphorylation of protein substrates by the cyclin-dependent kinases (CDKs). We screened a cDNA library by solid-phase phosphorylation and isolated hHR6A as a CDK2 substrate. hHR6A is the human homologue of the product of the Saccharomyces cerevisiae RAD6/UBC2 gene, a member of the family of ubiquitin-conjugating enzymes. hHR6A is phosphorylated in vitro by CDK-1 and -2 on Ser120, a residue conserved in all hHR6A homologues, resulting in a 4-fold increase in its ubiquitin-conjugating activity. In vivo, hHR6A phosphorylation peaks during the G2/M phase of cell cycle transition, with a concomitant increase in histone H2B ubiquitylation. Mutation of Ser120 to threonine or alanine abolished hHR6A activity, while mutation to aspartate to mimic phosphorylated serine increased hHR6A activity 3-fold. Genetic complementation studies in S.cerevisiae demonstrated that hHR6A Ser120 is critical for cellular proliferation. This is the first study to demonstrate regulation of UBC function by phosphorylation on a conserved residue and suggests that CDK-mediated phosphorylation of hHR6A is an important regulatory event in the control of cell cycle progression.  相似文献   
10.

Background  

The incidence and prevalence of diabetes are increasing all over the world. Complications of diabetes constitute a burden for the individuals and the whole society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号