首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4300篇
  免费   355篇
  国内免费   128篇
  2023年   26篇
  2022年   42篇
  2021年   95篇
  2020年   81篇
  2019年   90篇
  2018年   115篇
  2017年   98篇
  2016年   129篇
  2015年   163篇
  2014年   187篇
  2013年   298篇
  2012年   254篇
  2011年   275篇
  2010年   193篇
  2009年   146篇
  2008年   228篇
  2007年   222篇
  2006年   212篇
  2005年   182篇
  2004年   205篇
  2003年   181篇
  2002年   193篇
  2001年   80篇
  2000年   65篇
  1999年   62篇
  1998年   45篇
  1997年   31篇
  1996年   22篇
  1995年   16篇
  1994年   26篇
  1993年   20篇
  1992年   56篇
  1991年   52篇
  1990年   51篇
  1989年   41篇
  1988年   32篇
  1987年   38篇
  1986年   34篇
  1985年   37篇
  1984年   35篇
  1983年   31篇
  1982年   27篇
  1981年   39篇
  1980年   31篇
  1979年   23篇
  1978年   40篇
  1977年   28篇
  1976年   23篇
  1975年   21篇
  1973年   21篇
排序方式: 共有4783条查询结果,搜索用时 31 毫秒
1.
Abstract Competition experiments revealed that adenine and guanine were transported by a purine permease in both Candida glabrata 4 and a C. glabrata 4 cytosine permease negative mutant. The C. glabrata 4 cytosine permease negative mutant was isolated using 5-fluorocytosine selection. This mutant no longer transported cytosine, but transported adenine and guanine. A transport system for hypoxanthine was not detected. Hence, in addition to the cytosine permease, a purine permease exists in C. glabrata . This differs from the purine cytosine permeases in Saccharomyces cereuisiae and Candida albicans which transport adenine, cytosine, guanine and hypoxanthine.  相似文献   
2.
Abstract: The distribution of brain-type ankyrin (ankyrinB, 212 kDa) and erythrocyte-type ankyrin (ankyrinR, 239 kDa) was investigated in the subcellular fractions of rat forebrain (P1, 1,000 g pellet; P2, 15,000 g pellet; P3, 100,000 g pellet; S, 100,000 g supernatant) by immunoblotting using specific antibodies. The P2 fraction contained ∼40% of the 212- and 163-kDa isoforms of ankyrinB and the 239-kDa isoform of ankyrinR. Further subfractionation of the P2 by Percoll gradient centrifugation followed by separation of myelin showed association of the three ankyrin isoforms with the synaptosome-rich fraction but not with the myelin-rich fraction. The plasma membrane-rich P3 fraction contained a concentration of ankyrin isoforms similar to that in the P2 fraction. In vitro proteolysis of ankyrin in the P2 fraction with calpain showed that the 212-kDa ankyrinB was more susceptible to calpain than was ankyrinR. In the two-vessel occlusion model, ischemia for 30 min generated the 160-kDa fragment of ankyrinR, and reperfusion for 60 min after 30 min of ischemia remarkably increased the 160-kDa fragment. The reperfusion also significantly decreased the 212-kDa isoform of ankyrinB. Both ischemia-reperfusion and in vitro proteolysis with calpain generated the 160-kDa fragment of ankyrinR, suggesting the involvement of calpain.  相似文献   
3.
4.
Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.  相似文献   
5.
6.
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.  相似文献   
7.
8.
Although CD133 has been reported to be a promising colon cancer stem cell marker, the biological functions of CD133+ colon cancer cells remain controversial. In the present study, we investigated the biological differences between CD133+ and CD133 colon cancer cells, with a particular focus on their interactions with cancer-associated fibroblasts, especially CD10+ fibroblasts. We used 19 primary colon cancer tissues, 30 primary cultures of fibroblasts derived from colon cancer tissues and 6 colon cancer cell lines. We isolated CD133+ and CD133 subpopulations from the colon cancer tissues and cultured cells. In vitro analyses revealed that the two populations showed similar biological behaviors in their proliferation and chemosensitivity. In vivo analyses revealed that CD133+ cells showed significantly greater tumor growth than CD133 cells (P = 0.007). Moreover, in cocultures with primary fibroblasts derived from colon cancer tissues, CD133+ cells exhibited significantly more invasive behaviors than CD133 cells (P<0.001), especially in cocultures with CD10+ fibroblasts (P<0.0001). Further in vivo analyses revealed that CD10+ fibroblasts enhanced the tumor growth of CD133+ cells significantly more than CD10 fibroblasts (P<0.05). These data demonstrate that the in vitro invasive properties and in vivo tumor growth of CD133+ colon cancer cells are enhanced in the presence of specific cancer-associated fibroblasts, CD10+ fibroblasts, suggesting that the interactions between these specific cell populations have important roles in cancer progression. Therefore, these specific interactions may be promising targets for new colon cancer therapies.  相似文献   
9.
A hydrocarbon utilizing strain of Arthrobacter globiformis Lb isolated from local soil has been found to yield lysine 3.4 g l?1, keeping the medium optimal for pH, C- and N-sources. Addition of antibiotics and micronutrients to that optimal media stimulated cell growth and enhanced lysine yield.  相似文献   
10.
Carbon and nitrogen are essential elements for life. Glucose as a carbon source and glutamine as a nitrogen source are important nutrients for cell proliferation. About 100 years ago, it was discovered that cancer cells that have acquired unlimited proliferative capacity and undergone malignant evolution in their host manifest a cancer-specific remodeling of glucose metabolism (the Warburg effect). Only recently, however, was it shown that the metabolism of glutamine-derived nitrogen is substantially shifted from glutaminolysis to nucleotide biosynthesis during malignant progression of cancer—which might be referred to as a “second” Warburg effect. In this review, address the mechanism and relevance of this metabolic shift of glutamine-derived nitrogen in human cancer. We also examine the clinical potential of anticancer therapies that modulate the metabolic pathways of glutamine-derived nitrogen. This shift may be as important as the shift in carbon metabolism, which has long been known as the Warburg effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号