首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   6篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2002年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
1.

Introduction

Measurement of optic nerve sheath diameter (ONSD) by ultrasound is increasingly used as a marker to detect raised intracranial pressure (ICP). ONSD varies with age and there is no clear consensus between studies for an upper limit of normal. Knowledge of normal ONSD in a healthy population is essential to interpret this measurement.

Methods

In a prospective observational study, ONSD was measured using a 15 MHz ultrasound probe in healthy volunteers in Chittagong, Bangladesh. The aims were to determine the normal range of ONSD in healthy Bangladeshi adults and children, compare measurements in males and females, horizontal and vertical beam orientations and left and right eyes in the same individual and to determine whether ONSD varies with head circumference independent of age.

Results

136 subjects were enrolled, 12.5% of whom were age 16 or under. Median ONSD was 4.41 mm with 95% of subjects in the range 4.25–4.75 mm. ONSD was bimodally distributed. There was no relationship between ONSD and age (≥4 years), gender, head circumference, and no difference in left vs right eye or horizontal vs vertical beam.

Conclusions

Ultrasonographic ONSD in Bangladeshi healthy volunteers has a narrow bimodal distribution independent of age (≥4 years), gender and head circumference. ONSD >4.75 mm in this population should be considered abnormal.  相似文献   
2.
ABSTRACT

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.

The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.

Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body’s internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.

In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.  相似文献   
3.
The two branches of the Kennedy pathways (CDP-choline and CDP-ethanolamine) are the predominant pathways responsible for the synthesis of the most abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively, in mammalian membranes. Recently, hereditary diseases associated with single gene mutations in the Kennedy pathways have been identified. Interestingly, genetic diseases within the same pathway vary greatly, ranging from muscular dystrophy to spastic paraplegia to a childhood blinding disorder to bone deformations. Indeed, different point mutations in the same gene (PCYT1; CCTα) result in at least three distinct diseases. In this review, we will summarize and review the genetic diseases associated with mutations in genes of the Kennedy pathway for phospholipid synthesis. These single-gene disorders provide insight, indeed direct genotype-phenotype relationships, into the biological functions of specific enzymes of the Kennedy pathway. We discuss potential mechanisms of how mutations within the same pathway can cause disparate disease.  相似文献   
4.
With advances in new drug therapies, it is essential to understand the interactions between drugs and target molecules. In this study, we applied multiple spectroscopic techniques including absorbance, fluorescence, circular dichroism spectroscopy, viscosity, thermal melting, calorimetric, and molecular dynamics (MD) simulation to study the interaction between 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione (PPF) and calf thymus DNA (ct DNA) in the absence or presence of histone H1. PPF exhibits a high binding affinity towards ct DNA in binary and ternary systems. In addition, the result for the binding constant was observed within the range 104 M−1 achieved through fluorescence quenching data, while the values for enthalpy and entropy changes for ct DNA–PPF and (ct DNA–H1) PPF complexes were measured to be −72.54 kJ.mol−1, −161.14 J.mol−1 K−1, −85.34 kJ.mol−1, and −19.023 J.mol−1 K−1, respectively. Furthermore, in accordance with circular dichroism spectra, the inducement of ct DNA structural changes was observed during binding of PPF and H1 in binary and ternary system forms. The essential roles of hydrogen bonding and van der Waals forces throughout the interaction were suggested using thermodynamic parameters. According to the obtained data, the interaction mode of ct DNA–PPF and (ct DNA–H1) PPF complexes was intercalation binding. Suggested by the MD simulation study, the ct DNA–H1 complex caused a reduction in the stability of the DNA structure in the presence or absence of ligand, which demonstrated that PPF as an intercalating agent can further distort the structure. The information achieved from this study will be very helpful in understanding the effects of PPF on the conformational state of ct DNA in the absence or presence of the H1 molecule, which seems to be quite significant for clarifying the mechanisms of action and its pharmacokinetics.  相似文献   
5.
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.  相似文献   
6.
In sturgeons, the induction of gynogenesis and sex reversal could be important for potential production of neomale sturgeon and all‐female progeny for caviar production. The aim of this study was sex reversal of ship sturgeon (Acipenser nudiventris Lovetsky, 1828) gynogen into male sex. Five‐month‐old gynogens were sex reversed into male by including 17α‐methyl testosterone in their food for 7 months. Three treatments were considered as follows: (a) without treated (gynogen control), (b) 10 mg MT/kg diet, and (c) 50 mg MT/kg diet. All treatments (60 individuals) were sampled both the 30 and 36 months old and their sex was determined using classical histology method of gonad. The sex ratio of the progenies in the gynogen control were 73.3% female and 26.7% male. In treatment of 10 mg MT/kg feed, 18 specimens were studied that half of them (50%) showed pseudo‐testicular structure in the female gonad. That is 50% of the specimens were intersex, 27.7% were male and 22.3% were female. All of the fish fed by 50 mg MT/kg feed had been sex reversed to male. Sexual maturation of these fish had been recognized in stage III at 36 months old. In conclusion, 50 mg MT/kg feed found as effective dose for successful sex reversal in gynogenetic ship sturgeon.  相似文献   
7.
Spermatogonial cells (SCs) are key cells for spermatogenesis. These cells are affected by paracrine signals originated from nearby somatic cells, among them Leydig cells have receptors for osteocalcin, a hormone known for exerting positive roles in the promotion of spermatogenesis. The aim of this study was to evaluate roles for osteocalcin on SCs proliferative and differentiation features after coculture with Leydig cells. SCs and Leydig cells were isolated from neonate NMRI offspring mice and adult NMRI mice, respectively. SCs population were then enriched in a differential attachment technique and assessed for morphological features and identity. Then, SCs were cocultured with Leydig cells and incubated with osteocalcin for 4 weeks. Evaluation of proliferation and differentiation-related factors were surveyed using immunocytochemistry (ICC), Western blot, and quantitative real-time polymerase chain reaction (PCR). Finally, the rate of testosterone release to the culture media was measured at the end of 4th week. Morphological and flow cytometry results showed that the SCs were the population of cells able to form colonies and to express ID4, α6-, and β1-integrin markers, respectively. Leydig cells were also able to express Gprc6α as a specific marker for the cells. Incubation of SCs/Leydig coculture with osteocalcin has resulted in an increase in the rate of expressions for differentiation-related markers. Levels of testosterone in the culture media of SCs/Leydig was positively influenced by osteocalcin. It could be concluded that osteocalcin acts as a positive inducer of SCs in coculture with Leydig cells probably through stimulation of testosterone release from Leydig cells and associated signaling.  相似文献   
8.
The mRNA of human NF-kappaB repressing factor (NRF) contains a long 5'-untranslated region (UTR) that directs ribosomes to the downstream start codon by a cap-independent mechanism. Comparison of the nucleotide (nt) sequences of human and mouse NRF mRNAs reveals a high degree of identity throughout a fragment of 150 nt proximal to the start codon. Here, we show that this region constitutes a minimal internal ribosome entry segment (IRES) module. Enzymatic RNA structure analysis reveals a secondary structure model of the NRF IRES module. Point mutation analysis of the module determines a short, 14-nt RNA element (nt 640-653) as a mediator of IRES function. Purification of IRES binding cellular proteins and subsequent ESI/MS/MS sequence analysis led to identification of the RNA-binding protein, JKTBP1. EMSA experiments show that JKTBP1 binds upstream to the 14-nt RNA element in the NRF IRES module (nt 579-639). Over-expression of JKTBP1 significantly enhances activity of the NRF IRES module in dicistronic constructs. Moreover, siRNA experiments demonstrate that down-regulation of endogenous JKTBP1 decreases NRF IRES activity and the level of endogenous NRF protein. The data of this study show that JKTBP1 and the 14-nt element act independently to mediate NRF IRES activity.  相似文献   
9.
New anthrax lethal factor inhibitors (LFIs) were designed based upon previously identified potent inhibitors 1a and 2. Combining the new core structures with modifications to the C2-side chain yielded analogs with improved efficacy in the rat lethal toxin model.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号