首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1075577篇
  免费   112690篇
  国内免费   495篇
  2018年   9265篇
  2016年   12640篇
  2015年   17718篇
  2014年   20762篇
  2013年   29652篇
  2012年   32999篇
  2011年   33477篇
  2010年   22650篇
  2009年   20832篇
  2008年   29676篇
  2007年   30679篇
  2006年   28905篇
  2005年   27995篇
  2004年   27810篇
  2003年   26708篇
  2002年   25932篇
  2001年   48031篇
  2000年   48636篇
  1999年   38653篇
  1998年   13447篇
  1997年   13969篇
  1996年   13025篇
  1995年   12710篇
  1994年   12361篇
  1993年   12266篇
  1992年   31948篇
  1991年   31078篇
  1990年   30318篇
  1989年   29554篇
  1988年   27769篇
  1987年   26011篇
  1986年   24318篇
  1985年   24332篇
  1984年   20244篇
  1983年   17158篇
  1982年   13329篇
  1981年   12079篇
  1980年   11177篇
  1979年   18933篇
  1978年   14988篇
  1977年   13614篇
  1976年   12544篇
  1975年   14023篇
  1974年   15232篇
  1973年   15089篇
  1972年   13634篇
  1971年   12493篇
  1970年   10710篇
  1969年   10506篇
  1968年   9566篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Axonal regeneration after injury to the CNS is hampered by myelin‐derived inhibitors, such as Nogo‐A. Natural products, such as green tea, which are neuroprotective and safe for long‐term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor‐differentiated neuronal‐like Neuroscreen‐1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin‐3‐gallate (EGCG), prevent both the neurite outgrowth‐inhibiting activity and growth cone‐collapsing activity of Nogo‐66 (C‐terminal domain of Nogo‐A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67‐kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N‐acetylcysteine and cell‐permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2O2 in this process. Accordingly, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady‐state generation (1–2 μM), mimicked GTPP in counteracting the action of Nogo‐66. Exogenous H2O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2O2, inhibit the antineuritogenic action of Nogo‐A.

  相似文献   

2.
3.
4.
5.
Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.  相似文献   
6.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   
7.
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P‐glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood‐brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP‐containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post‐translationally regulated at the BBB. The goal of the current study was to identify proteins that co‐localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co‐localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co‐fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post‐translational regulation of PgP activity at the BBB.

  相似文献   

8.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
9.
The study of the evolutionary interrelationships among the species encompassed in the Neotropical genus Argia (Zygoptera: Coenagrionidae) has been neglected. The goal of this study is to infer the phylogenetic relationships among 36 species of Argia Rambur, 1842, using complementary data sets (i.e., larval morphology and mitochondrial DNA). The morphological data set comprises 76% of the larvae currently described for this genus and includes 97 morphological characters. From those, 47 characters have not been previously used in taxonomic studies involving dragonflies’ larvae. This is the first cladistic study based on larvae morphology for species within the suborder Zygoptera. Data partitions were analyzed individually, as well as total evidence, using parsimony and Bayesian inference as criteria for optimal-tree selection. The results support the monophyly of the North American species of Argia. This genus can be identified by the combination of eight synapomorphies, four of which are exclusively found in Argia. According to the optimal trees, the individual data sets (i.e., morphology and DNA sequences) have a high level of homoplasy, resulting in soft polytomies and low support for several nodes. The specific relationships of the terminal units differ between the phylogenies; nonetheless, there is historical congruence among them. Within Argia, five clades were consistently recovered. Most of those clades have been identified, at least in part, in previous phylogenetic and taxonomic studies. Indubitably, the morphological characters from larvae have historical signal useful for cladistic and taxonomic inference. Therefore, it should be a priority to pay more attention to this source of characters.  相似文献   
10.
High glucose concentrations due to diabetes increase apoptosis of vascular pericytes, impairing vascular regulation and weakening vessels, especially in brain and retina. We sought to determine whether vitamin C, or ascorbic acid, could prevent such high glucose-induced increases in pericyte apoptosis. Culture of human microvascular brain pericytes at 25 mM compared to 5 mM glucose increased apoptosis measured as the appearance of cleaved caspase 3. Loading the cells with ascorbate during culture decreased apoptosis, both at 5 and 25 mM glucose. High glucose-induced apoptosis was due largely to activation of the receptor for advanced glycation end products (RAGE), since it was prevented by specific RAGE inhibition. Culture of pericytes for 24 h with RAGE agonists also increased apoptosis, which was completely prevented by inclusion of 100 μM ascorbate. Ascorbate also prevented RAGE agonist-induced apoptosis measured as annexin V binding in human retinal pericytes, a cell type with relevance to diabetic retinopathy. RAGE agonists decreased intracellular ascorbate and GSH in brain pericytes. Despite this evidence of increased oxidative stress, ascorbate prevention of RAGE-induced apoptosis was not mimicked by several antioxidants. These results show that ascorbate prevents pericyte apoptosis due RAGE activation. Although RAGE activation decreases intracellular ascorbate and GSH, the prevention of apoptosis by ascorbate may involve effects beyond its function as an antioxidant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号