首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   42篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   6篇
  2019年   4篇
  2018年   11篇
  2017年   4篇
  2016年   6篇
  2015年   26篇
  2014年   24篇
  2013年   13篇
  2012年   28篇
  2011年   19篇
  2010年   20篇
  2009年   10篇
  2008年   15篇
  2007年   8篇
  2006年   12篇
  2005年   23篇
  2004年   10篇
  2003年   15篇
  2002年   9篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1998年   2篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1972年   3篇
  1971年   1篇
  1968年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
1.
A performance-based measure for assessing executive functions (EF) is useful to understand patients’ real life performance of EF. This study aimed to develop a performance-based measure of executive functions (PEF) based on the Lezak model and to examine psychometric properties (i.e., unidimensionality and reliability) of the PEF using Rasch analysis in patients with schizophrenia. We developed the PEF in three phases: (1) designing the preliminary version of PEF; (2) consultation with experts, cognitive interviews with patients, and pilot tests on patients to revise the preliminary PEF; (3) establishment of the final version of the PEF and examination of unidimensionality and Rasch reliability. Two hundred patients were assessed using the revised PEF. After deleting items which did not satisfy the Rasch model’s expectations, the final version of the PEF contained 1 practice item and 13 test items for assessing the four domains of EF (i.e., volition, planning, purposive action, and effective performance). For unidimensional and multidimensional Rasch analyses, the 4 domains showed good reliability (i.e., 0.77–0.85 and 0.87–0.90, respectively). Our results showed that the PEF had satisfactory unidimensionality and Rasch reliability. Therefore, clinicians and researchers could use the PEF to assess the four domains of EF in patients with schizophrenia.  相似文献   
2.
3.
Neuromuscular electrical stimulation (NMES) is used for preventing muscle atrophy and improving muscle strength in patients and healthy people. However, the current intensity of NMES is usually set at a level that causes the stimulated muscles to contract. This typically causes pain. Quantifying the instantaneous changes in muscle microcirculation and metabolism during NMES before muscle contraction occurs is crucial, because it enables the current intensity to be optimally tuned, thereby reducing the NMES‐induced muscle pain and fatigue. We applied near‐infrared spectroscopy (NIRS) to measure instantaneous tissue oxygenation and deoxygenation changes in 43 healthy young adults during NMES at 10, 15, 20, 25, 30, and 35 mA. Having been stabilized at the NIRS signal baseline, the tissue oxygenation and total hemoglobin concentration increased immediately after stimulation in a dose‐dependent manner (P < 0.05) until stimulation was stopped at the level causing muscle contraction without pain. Tissue deoxygenation appeared relatively unchanged during NMES. We conclude that NIRS can be used to determine the optimal NMES current intensity by monitoring oxygenation changes.   相似文献   
4.
5.
Recent founder mutations may play important roles in complex diseases and Mendelian disorders. Detecting shared haplotypes that are identical by descent (IBD) could facilitate discovery of these mutations. Several programs address this, but are usually limited to detecting pair-wise shared haplotypes and not providing a comparison of cases and controls. We present a novel algorithm and software package, HaploShare, which detects extended haplotypes that are shared by multiple individuals, and allows comparisons between cases and controls. Testing on simulated and real cases demonstrated significant improvements in detection power and reduction of false positive rate by HaploShare relative to other programs.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0662-9) contains supplementary material, which is available to authorized users.  相似文献   
6.
A novel scheme for hybridizing inkjet‐printed thin film Cu(In,Ga)Se2 (CIGS) solar cells with self‐assembled clusters of nanocrystal quantum dots (NQDs), which provides a 10.9% relative enhancement of the photon conversion efficiency (PCE), is demonstrated. A non‐uniform layer of NQD aggregates is deposited between the transparent conductive oxide and a CdS/CIGS p‐n junction using low cost pulsed‐spray deposition. Hybridization significantly improves the external quantum efficiency of the hybrid devices in the absorption range of the NQDs and in the red to near‐IR parts of the spectrum. The low wavelength response enhancement is found to be induced by luminescent down‐shifting (LDS) from the NQD layer, while the increase at longer wavelengths is attributed to internal scattering from NQD aggregates. LDS is demonstrated using time‐resolved spectroscopy, and the morphology of the NQD layer is investigated in fluorescence microscopy and cross‐sectional transmission electron microscopy. The influence of the NQD dose on the PCE of the hybrid devices is investigated and an optimum value is obtained. The low costs and limited material consumptions associated with pulsed‐spray deposition make these flexible hybrid devices promising candidates to help push thin‐film photovoltaic technology towards grid parity.  相似文献   
7.
8.
A new technique of autoperfusion has been devised for the study of the vasomotor activity of the bronchial artery. The artery is perfused with autologous blood from the femoral artery at a constant flow rate, therefore a change in the perfusion pressure can be related to a change in the active tension of the vascular wall. The method was employed in assessing the effect of α-and β-adrenoceptor stimulations and α- and β-adrenoceptor blockades. The results clearly show both α- and β-adrenoceptors exist in the bronchial artery.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号