首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   29篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   17篇
  2010年   7篇
  2009年   9篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1972年   1篇
  1957年   1篇
  1952年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
1.
Glutamine synthetase from Synechocystis sp. strain PCC 6803 is inactivated by ammonium addition to cells growing with nitrate as the nitrogen source. The enzyme can be reactivated in vitro by different methods such as alkaline phosphatase treatment, but not phosphodiesterase, by raising the pH of the crude extract to values higher than 8, by increasing the ionic strength of the cell-free extract, or by preincubation with organic solvents, such as 2-propanol and ethanol. These results suggest that the loss of glutamine synthetase activity promoted by ammonium involves the non-covalent binding of a phosphorylated compound to the enzyme and support previous results that rule out the existence of an adenylylation/deadenylylation system functioning in the regulation of cyanobacterial glutamine synthetase.  相似文献   
2.

Background

The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These “synonymous mRNAs” may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of “silent” single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins.

Results

We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein’s important structural and functional features.

Conclusions

This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein’s functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1734-7) contains supplementary material, which is available to authorized users.  相似文献   
3.
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology.  相似文献   
4.
One limitation of almost all antiviral Quantitative Structure–Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. 2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg. Med. Chem. 2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg. Med. Chem. 2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug–drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity = 84.62%) and 119 of 139 non-active compounds (sensitivity = 85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug–drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.  相似文献   
5.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   
6.
The previously reported inhibitory activity of a 22 KDa protease and α-amylase inhibitor extracted from maize seeds, was re-investigated in order to confirm or rectify its ability to inactivate protease and α-amylase activities. The same inhibition was detected when the 22 KDa protein was purified following the original methodology (Richardson et al. 1987). However, when a new ion-exchange chromatography step was introduced after the RP-HPLC, the apparently homogeneous 22 KDa protein was further resolved into five different fractions. Four of them corresponded to different isoforms of the 22 KDa protein, all of which lacked inhibitory activity. The other small band corresponded to a contaminant protein, which was identified as the 14 KDa α-amylase/trypsin inhibitor. This protein was responsible for the reported double inhibition (protease and α-amylase inhibition), previously assigned to the 22 KDa protein. With this result, it was then possible to settle the question concerning the ability of this 22 KDa protein to inhibit those enzymatic activities. Interestingly, the four isoforms of the 22 KDa protein fractions showed anti-fungal activity when tested in vitro. In summary, we suggest that both the PR-proteins, as well as the inhibitor's family classification, should now be corrected. Thus, the 22 KDa protein should no longer be considered as a member of either the protease or of the amylase inhibitor families. Similarly, the inhibitory activity assigned to the PR-proteins should no longer be considered.  相似文献   
7.
8.
9.

Background

Posaconazole is used for the prophylaxis of invasive fungal disease (IFD). Previous studies have shown it to be cost-effective compared to fluconazole/itraconazole. However, posaconazole has never been economically evaluated in developing countries.

Aims

The aim of the present study was to perform a cost-effectiveness analysis of posaconazole compared to fluconazole in public (SUS) and private hospitals (PHS) in Brazil.

Methods

A cost-effectiveness simulation was conducted on the basis of a pivotal study on the use of posaconazole in acute myeloid leukemia (AML) patients, adjusting the costs to Brazilian data.

Results

A pharmacoeconomic analysis was performed on a hypothetical sample of 100 patients in each drug group. The total cost of posaconazole use alone was USD$ 220,656.31, whereas that for fluconazole was USD$ 83,875.00. Our results showed that patients with IFD remain hospitalized for an additional 12 days, at an average cost of USD$ 850.85 per patient per day. The total money spent by PHS for 100 patients for 100 days was USD$ 342,318.00 for the posaconazole group and USD$ 302,039.00 for the fluconazole group. An analysis of sensitivity (10%) revealed no intergroup difference.

Conclusions

In Brazil posaconazole is cost-effective, and should be considered for the prophylaxis of patients with AMD/myelodysplasia (AML/MDS) undergoing chemotherapy.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号