首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32420篇
  免费   3076篇
  国内免费   10篇
  2023年   160篇
  2022年   122篇
  2021年   566篇
  2020年   475篇
  2019年   617篇
  2018年   776篇
  2017年   610篇
  2016年   1114篇
  2015年   1775篇
  2014年   1933篇
  2013年   2260篇
  2012年   2764篇
  2011年   2537篇
  2010年   1682篇
  2009年   1378篇
  2008年   1888篇
  2007年   1796篇
  2006年   1631篇
  2005年   1477篇
  2004年   1483篇
  2003年   1197篇
  2002年   1165篇
  2001年   424篇
  2000年   377篇
  1999年   340篇
  1998年   262篇
  1997年   220篇
  1996年   186篇
  1995年   174篇
  1994年   186篇
  1993年   161篇
  1992年   231篇
  1991年   229篇
  1990年   211篇
  1989年   233篇
  1988年   204篇
  1987年   179篇
  1986年   174篇
  1985年   166篇
  1984年   148篇
  1983年   118篇
  1982年   115篇
  1981年   119篇
  1980年   110篇
  1979年   125篇
  1978年   119篇
  1976年   101篇
  1975年   102篇
  1974年   107篇
  1973年   95篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
2.
3.
4.
5.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.  相似文献   
7.
Transboundary haze episodes caused by seasonal forest fires have become a recurrent phenomenon in Southeast Asia, with serious environmental, economic, and public health implications. Here we present a cross-sectional survey conducted among people in Kuala Lumpur and surrounds to assess the links between knowledge, attitudes, and practices in relation to the transboundary haze episodes. Of 305 respondents, 125 were amateur athletes participating in a duathlon event and the remainder were surveyed in an inner-city shopping mall. Across the whole sample, people who possessed more factual information about the haze phenomenon showed significantly higher levels of concern. Duathletes were more knowledgeable than non-duathletes and also more concerned about the negative effects of haze, especially on health. For all people who regularly practice outdoor sports (including people interviewed at the shopping mall), higher levels of knowledge and concerned attitudes translated into a greater likelihood of engaging in protective practices, such as cancelling their outdoor training sessions, while those with greater knowledge were more likely to check the relevant air pollution index on a daily basis. Our results indicate that the provision of accurate and timely information about air quality to residents will translate into beneficial practices, at least among particularly exposed individuals, such as amateur athletes who regularly practice outdoor sports.  相似文献   
8.
9.
Cloning Plant Genes Known Only by Phenotype   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   
10.
Vitamin D3 (D3) has been shown to activate several macrophage functions. To determine whether D3 could activate macrophages to kill or inhibit intracellular growth of Mycobacterium avium complex (MAC), human monocyte-derived macrophages were treated with D3 (10(-7), 10(-8), and 10(-9) M) 24 hr before or for 48 hr after MAC infection. All three concentrations were associated with inhibition of growth or killing of MAC in a dose-dependent fashion (28 +/- 4% and 22 +/- 3% of killing and inhibition of growth, respectively, at pharmacological concentrations) when added to the monolayer before injection or 60.4 +/- 6%, 50.4 +/- 3%, and 41.4 +/- 6%, respectively, when added to the monolayers after infection. We found that D3-treated macrophages produced increased concentrations of tumor necrosis factor (TNF) and granulocyte-monocyte colony stimulating factor (GM-CSF). Subsequently, macrophages were activated by D3 in the presence of anti-TNF or anti-GM-CSF antibody: At 10(-9) M of D3 there was no inhibition of D3-dependent macrophage activation by anti-TNF antibody, whereas anti-GM-CSF antibody was associated with 100% inhibition. At 10(-8) M of D3, anti-TNF antibody inhibited 35 +/- 6% of killing, and anti-GM-CSF antibody was associated with 100% inhibition. At 10(-7) M of D3, anti-TNF antibody inhibited 58 +/- 4% and anti-GM-CSF antibody 89 +/- 3% of killing. D3 treatment is associated with anti-MAC activity in human macrophages, and this activity appears to be mediated by both TNF and GM-CSF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号