首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3737篇
  免费   369篇
  国内免费   25篇
  2022年   18篇
  2021年   62篇
  2020年   46篇
  2019年   53篇
  2018年   85篇
  2017年   78篇
  2016年   94篇
  2015年   153篇
  2014年   162篇
  2013年   210篇
  2012年   235篇
  2011年   211篇
  2010年   160篇
  2009年   127篇
  2008年   163篇
  2007年   152篇
  2006年   154篇
  2005年   141篇
  2004年   154篇
  2003年   109篇
  2002年   118篇
  2001年   121篇
  2000年   125篇
  1999年   96篇
  1998年   42篇
  1997年   30篇
  1996年   25篇
  1995年   30篇
  1994年   34篇
  1993年   29篇
  1992年   57篇
  1991年   55篇
  1990年   52篇
  1989年   46篇
  1988年   42篇
  1987年   35篇
  1986年   49篇
  1985年   35篇
  1984年   41篇
  1983年   29篇
  1979年   26篇
  1978年   23篇
  1977年   30篇
  1976年   22篇
  1972年   25篇
  1970年   30篇
  1969年   32篇
  1968年   28篇
  1967年   25篇
  1965年   22篇
排序方式: 共有4131条查询结果,搜索用时 328 毫秒
1.
2.
Differential and integral W-values for ionization in gaseous water for electron and proton irradiation have been analyzed from the theoretical point of view for consistency between ionization and total inelastic collision cross sections. For low-energy electrons, which are ubiquitous for all primary radiations, the experimental or compiled cross sections from different sources are sometimes not consistent with one another. A practical, self-consistent procedure is outlined in such cases. The high-energy asymptotic W-values for differential and integral ionization are calculated to be 33.7 and 34.7 eV, respectively, for electron irradiation and 34.6 and 32.5 eV, respectively, for proton irradiation. The computed variations of the W-values with energy are generally in good agreement with experiment. Integral primary W-values due only to the interactions between the incident particle and the water vapor are calculated to be 43.5 and 45.0 eV for electrons and protons, respectively, in the high-energy asymptotic limit.  相似文献   
3.
Summary Pollen mother cells at early meiotic prophase fromFritillaria lanceolata, F. mutica, Tulbaghia violacea, the lily “Formobel”,Triticum aegilopoides, T. dicoccoides, T. aestivum and synaptic and asynaptic forms ofT. durum were studied in thin sections with the electron microscope (a) in relation to distribution of nuclear pores (b) in respect of fine structure of the pore complex in those of the first four. The pores were distributed in random clusters during leptotene to pachytene in all plants, except in the two forms ofT. durum where there were either no pores or so few that they were not detectable. Probably correlated with this, the two membranes of the nuclear envelope were often widely separated and frequently sacculated. No pores were seen at leptotene in the part of the envelope to which, in theFritillarias and lily, the nucleolus was adpressed at this time. Evidence supporting a recent model which proposes that annuli are composed of three rings of eight granular subunits was obtained. These subunits as well as a dense central element, observed in most pores, were composed of filaments about 3 nm in diameter and evidently protein in character. There was evidence of a continuity between filaments in the central element and those in the rings of subunits which encircle the pore aperture at both the nuclear and cytoplasmic sides of the pore. In profiles of pores knobbed filaments were sometimes seen extending laterally from the pore wall into the perinuclear space at two sides. Questions concerning the role of the annulus are discussed. The author wish to thank Mr. R. F. Scott for construction to the model.  相似文献   
4.
5.
6.
7.
8.
1. The biosynthesis of 18-19S thyroglobulin has been studied in a larval and adult freshwater lamprey (Lampetra planeri Bl.). 2. In vivo and in vitro experiments have been performed by injecting into the coelomic cavity or by incubating branchial region labeled constituents of Tg of higher vertebrates (125I, [3H]leucine and various [3H]carbohydrates). 3. Larvae (ammocoetes) and adults incorporate all labels into thyroglobulin (18-19S Tg), containing a small proportion of labeled T3 and T4, as identified by paper chromatography, and very minute amounts of stable iodine. 4. In adults, the biosynthesis of 18-19S Tg proceeds much more rapidly and the labels are incorporated in higher percentage than in larvae. 5. The demonstration of the biosynthesis of the specific thyroid protein, 18-19S Tg, in larvae indicates that the biochemical mechanism of hormonogenesis is present in larval endostyle before the morphological differentiation of thyroid cells and follicles occurring during metamorphosis. 6. Some 18-19S Tg is apparently stored in the endostyle.  相似文献   
9.
A mutation in the genome of poliovirus type 3 that is known to reduce neurovirulence in humans similarly reduces neurovirulence in mice when incorporated into a mouse-adapted-human poliovirus recombinant. Viral recombinants with a uracil at nucleotide position 472 in the 5'-noncoding regions of their genomes are unable to replicate in the mouse brain. Viral recombinants with a cytosine at this position are neurovirulent in mice. Neurovirulence of poliovirus in mice may therefore prove to be a useful indicator of the genetic stability of new attenuating mutations created by site-directed mutagenesis.  相似文献   
10.
Summary The relationship between ichthyotoxicity and predation-related defensive functional morphology was examined in alcyonacean soft corals of the central and northern regions of the Great Barrier Reef (GBR), Australia. Approximately 170 specimens were assessed encompassing a number of genera within three families: 1) the Alcyoniidae (Lobophytum, Sarcophytum, Sinularia, Cladiella, Parerythropodium, and Alcyonium); 2) Neptheidae (Lemnalia, Paralemnalia, Capnella, Lithophyton, Nephthea, Dendronephthya, Scleronephthya, and Stereonephthya), and 3) Xeniidae (Anthelia, Efflatounaria, Cespitularia, Heteroxenia, and Xenia). Ichthyotoxicity data were derived from earlier studies which used Gambusia affinis Baird and Girard (Vertebrata, Pisces) as a test organism. These data were compared to morphological data collected from specimens in the field and laboratory. Three sets of statistical analyses were performed, each considering a progressively narrower group of taxa. The first included 68 specimens and considered 16 morphological characters in each, falling into the general categories of gross colony form, colony texture, presence of mucus, colony color, polyp retractility, and sclerite morphology and distribution. These were tested for independence against ichthyotoxicity data. The second set of analyses involved a more restricted morphological data set derived from 28 species of Sinularia in combination with 28 species within the Nephtheidae, comparing them to their respective toxicity ranks. The third analysis considered the previous two taxonomic groups separately in relation to their toxicity levels.The attempt to consider many morphological characters in a taxonomically diverse collection did not reveal any general association in the Alcyonacea between defensive morphology and toxicity, and those associations which did emerge were clearly erroneous. The second analysis, considering only Sinularia spp. and nephtheids, demonstrated a negative association between ichthyotoxicity and the morphological characters of a) polypary armament, b) microarmament of the individual polyp, and c) strong mineralization of the coenenchyme. The third analysis revealed that the negative association found between toxicity and the first two characters was derived entirely from the nephtheids while the association detected between toxicity and the third character was restricted to Sinularia. It is concluded that a relationship between toxicity and morphology can be demonstrated, but it is heavily dependent upon which specific morphological characters are being considered and at what level of taxonomic resolution the analysis is being performed. An approach utilizing many characters over many taxa is unlikely to yield significant, reliable, or meaningful results.Australian Institute of Marine Science Contribution Number 383  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号