首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682625篇
  免费   78805篇
  国内免费   821篇
  2018年   6041篇
  2016年   8127篇
  2015年   11404篇
  2014年   13447篇
  2013年   18329篇
  2012年   21343篇
  2011年   21964篇
  2010年   14572篇
  2009年   13546篇
  2008年   19542篇
  2007年   20129篇
  2006年   19085篇
  2005年   18315篇
  2004年   18284篇
  2003年   17298篇
  2002年   16926篇
  2001年   32632篇
  2000年   32783篇
  1999年   25668篇
  1998年   8490篇
  1997年   8690篇
  1996年   8144篇
  1995年   7961篇
  1994年   7689篇
  1993年   7751篇
  1992年   21041篇
  1991年   20812篇
  1990年   20139篇
  1989年   19507篇
  1988年   18222篇
  1987年   17140篇
  1986年   16061篇
  1985年   15650篇
  1984年   12766篇
  1983年   11071篇
  1982年   8205篇
  1981年   7303篇
  1980年   6864篇
  1979年   11862篇
  1978年   9446篇
  1977年   8491篇
  1976年   7786篇
  1975年   8959篇
  1974年   9647篇
  1973年   9447篇
  1972年   8378篇
  1971年   7805篇
  1970年   6731篇
  1969年   6593篇
  1968年   5921篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
3.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
4.
5.
An insufficiently known bivalve and gastropod assemblage from the Early-Middle Miocene (Tarkhanian-Chokrakian) of northern Sinop Province (Turkey), is analyzed. Environments of the assemblage are reconstructed for the Chokrakian as subtidal, with prevailing lime and sandy bottom and good aeration, and partially well vegetated. Impoverishment of the mollusk biocoenose in this part of the marine basin (only 18 bivalve and 22 gastropod species recorded) compared to other areas, including the closest regions, Bulgaria on the west and Georgia on the east, is emphasized. The relatively low diversity of the fauna is probably connected not only with insufficient collecting, but with special hydrological conditions. A special aspect of the fauna is highlighted by the presence of the bivalve Circomphalus foliaceolamellosus subplicatus (Orb.), which is rare in the Chokrakian.  相似文献   
6.
7.
8.
9.
Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog (Pseudacris regilla) is the most common vocal species of the Pacific Northwest and can occupy human‐dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time (“spatiotemporal communication”) over which a Pacific chorus frog vocalization could be heard revealed that in high‐noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space–time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.  相似文献   
10.
Historically, marine ecologists have lacked efficient tools that are capable of capturing detailed species distribution data over large areas. Emerging technologies such as high‐resolution imaging and associated machine‐learning image‐scoring software are providing new tools to map species over large areas in the ocean. Here, we combine a novel diver propulsion vehicle (DPV) imaging system with free‐to‐use machine‐learning software to semi‐automatically generate dense and widespread abundance records of a habitat‐forming algae over ~5,000 m2 of temperate reef. We employ replicable spatial techniques to test the effectiveness of traditional diver‐based sampling, and better understand the distribution and spatial arrangement of one key algal species. We found that the effectiveness of a traditional survey depended on the level of spatial structuring, and generally 10–20 transects (50 × 1 m) were required to obtain reliable results. This represents 2–20 times greater replication than have been collected in previous studies. Furthermore, we demonstrate the usefulness of fine‐resolution distribution modeling for understanding patterns in canopy algae cover at multiple spatial scales, and discuss applications to other marine habitats. Our analyses demonstrate that semi‐automated methods of data gathering and processing provide more accurate results than traditional methods for describing habitat structure at seascape scales, and therefore represent vastly improved techniques for understanding and managing marine seascapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号