首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   46篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   21篇
  2020年   19篇
  2019年   18篇
  2018年   27篇
  2017年   18篇
  2016年   26篇
  2015年   48篇
  2014年   52篇
  2013年   63篇
  2012年   83篇
  2011年   85篇
  2010年   44篇
  2009年   41篇
  2008年   62篇
  2007年   43篇
  2006年   39篇
  2005年   31篇
  2004年   26篇
  2003年   12篇
  2002年   25篇
  2001年   12篇
  2000年   13篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1988年   2篇
排序方式: 共有834条查询结果,搜索用时 140 毫秒
1.
2.
3.
4.
The N‐degron pathway determines the half‐life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N‐terminal residue (N‐degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N‐degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N‐degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N‐degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N‐degron. The key determinants for α‐amino group recognition are conserved among all ClpS proteins, but the α3‐helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N‐degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N‐degron. A combination of the fine‐tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N‐degron selectivity of the plant ClpS protein.  相似文献   
5.
6.
7.
An aerobic, Gram-negative, coccoid to short rod-shaped and non-flagellated marine bacterial strain S354T was isolated from seawater of Micronesia. The strain was capable to degrade agar-forming slight depression into agar plate. Growth occurred at a temperature range of 12–44 °C, a pH range of 5–9, and a salinity range of 1–7 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences suggested that S354T belongs to the family Flammeovirgaceae. The novel strain was most closely related to Limibacter armeniacum YM 11-185T with similarity of 92.5 %. The DNA G+C content was 43.8 mol%. The major fatty acids (>10 %) were iso-C15:0 and C16:1 ω5c. The predominant isoprenoid quinone was determined to be MK-7. Polar lipid profile of S354T consisted of phosphatidylethanolamine, unknown polar lipid, and unknown glycolipids. Based on the phenotypic, phylogenetic, biochemical, and physiological tests conducted in this study, S354T is proposed to represent a type strain of a novel genus and species. The 16S rRNA gene sequence of S354T is registered in GenBank under the accession number JQ639084. The type of strain Algivirga pacifica gen. nov., sp. nov. is S354T (=KCCM 90107T=JCM 18326T).  相似文献   
8.
c-Jun NH2-terminal kinases (JNKs) and phosphatidylinositol 3-kinase (PI3-K) play critical roles in chronic diseases such as cancer, type II diabetes, and obesity. We describe here the binding of quercetagetin (3,3′,4′,5,6,7-hydroxyflavone), related flavonoids, and SP600125 to JNK1 and PI3-K by ATP-competitive and immobilized metal ion affinity-based fluorescence polarization assays and measure the effect of quercetagetin on JNK1 and PI3-K activities. Quercetagetin attenuated the phosphorylation of c-Jun and AKT, suppressed AP-1 and NF-κB promoter activities, and also reduced cell transformation. It attenuated tumor incidence and reduced tumor volumes in a two-stage skin carcinogenesis mouse model.Our crystallographic structure determination data show that quercetagetin binds to the ATP-binding site of JNK1. Notably, the interaction between Lys55, Asp169, and Glu73 of JNK1 and the catechol moiety of quercetagetin reorients the N-terminal lobe of JNK1, thereby improving compatibility of the ligand with its binding site. The results of a theoretical docking study suggest a binding mode of PI3-K with the hydroxyl groups of the catechol moiety forming hydrogen bonds with the side chains of Asp964 and Asp841 in the p110γ catalytic subunit. These interactions could contribute to the high inhibitory activity of quercetagetin against PI3-K. Our study suggests the potential use of quercetagetin in the prevention or therapy of cancer and other chronic diseases.  相似文献   
9.
A Vigna nakashimae (VN) extract has been shown to have antidiabetic and anti-obesity effects. However, the mechanism underlying the effect of a VN extract on hepatic inflammation and endoplasmic reticulum (ER) stress remains unclear. In the present study, we investigated how a VN extract protects against the development of non-alcoholic fatty liver disease (NAFLD). A VN extract for 12 weeks reduced the body weight, serum metabolic parameters, cytokines, and hepatic steatosis in high-fat diet (HFD)-fed mice. A VN extract decreased HFD-induced hepatic acetyl CoA carboxylase and glucose transporter 4 expressions. In addition to the levels of high-mobility group box 1 and receptor for advanced glycation, the hepatic expression of ATF4 and caspase-3 was also reduced by a VN extract. Thus, these data indicate that a chronic VN extract prevented NAFLD through multiple mechanisms, including inflammation, ER stress, and apoptosis in the liver.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号