首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2882篇
  免费   301篇
  国内免费   10篇
  2023年   13篇
  2021年   26篇
  2020年   32篇
  2019年   52篇
  2018年   68篇
  2017年   47篇
  2016年   72篇
  2015年   152篇
  2014年   145篇
  2013年   181篇
  2012年   219篇
  2011年   202篇
  2010年   121篇
  2009年   112篇
  2008年   122篇
  2007年   116篇
  2006年   134篇
  2005年   135篇
  2004年   124篇
  2003年   111篇
  2002年   88篇
  2001年   91篇
  2000年   93篇
  1999年   59篇
  1998年   31篇
  1997年   27篇
  1996年   29篇
  1994年   22篇
  1993年   11篇
  1992年   43篇
  1991年   46篇
  1990年   36篇
  1989年   34篇
  1988年   31篇
  1987年   33篇
  1986年   27篇
  1985年   17篇
  1984年   27篇
  1983年   29篇
  1982年   23篇
  1981年   17篇
  1980年   13篇
  1979年   17篇
  1978年   23篇
  1977年   16篇
  1976年   19篇
  1975年   13篇
  1974年   12篇
  1973年   15篇
  1972年   11篇
排序方式: 共有3193条查询结果,搜索用时 15 毫秒
1.
The number of somatic kineties in Pelagostrobilidium ranges from 4 to 6 according to the present state of knowledge. This study investigates Pelagostrobilidium liui n. sp. using live observation, protargol stain, and small subunit rDNA data sequencing. Pelagostrobilidium liui n. sp. is characterized by having a spherical‐shaped body, four somatic kineties, with kinety 2 spiraled around the left side of body, about six elongated external membranelles, and invariably no buccal membranelle. It differs from its most similar congener, Pelagostrobilidium minutum Liu et al., 2012 , in (i) cell shape; (ii) macronucleus width; (iii) oral apparatus; (iv) anterior orientation of kinety 2; (v) location where kinety 2 commences; (vi) arrangement of kinety 1; (vii) distance between the anterior cell end and the locations where kineties commence; and (viii) the presence of 12 different bases (including two deletions) in the small subunit rDNA sequences. The diagnosis of P. minutum Liu et al., 2012 is also improved to include the following new characteristics: invariably four somatic kineties; kineties 2 and 4 alone commence at the same level; kinety 2 originates from right anterior cell half on ventral side, extends sinistrally posteriorly, over kinety 1, around left posterior region, terminates near posterior cell end on dorsal side; kinety 1 commences below anterior third of kinety 2.  相似文献   
2.
Antrodia camphorata is a well-known medicinal mushroom in Taiwan and has been studied for decades, especially with focus on anti-cancer activity. Polysaccharides are the major bioactive compounds reported with anti-cancer activity, but the debates on how they target cells still remain. Research addressing the encapsulation of polysaccharides from A. camphorata extract (ACE) to enhance anti-cancer activity is rare. In this study, ACE polysaccharides were nano-encapsulated in chitosan-silica and silica (expressed as ACE/CS and ACE/S, respectively) to evaluate the apoptosis effect on a hepatoma cell line (Hep G2). The results showed that ACE polysaccharides, ACE/CS and ACE/S all could damage the Hep G2 cell membrane and cause cell death, especially in the ACE/CS group. In apoptosis assays, DNA fragmentation and sub-G1 phase populations were increased, and the mitochondrial membrane potential decreased significantly after treatments. ACE/CS and ACE/S could also increase reactive oxygen species (ROS) generation, induce Fas/APO-1 (apoptosis antigen 1) expression and elevate the proteolytic activities of caspase-3, caspase-8 and caspase-9 in Hep G2 cells. Unsurprisingly, ACE/CS induced a similar apoptosis mechanism at a lower dosage (ACE polysaccharides = 13.2 μg/mL) than those of ACE/S (ACE polysaccharides = 21.2 μg/mL) and ACE polysaccharides (25 μg/mL). Therefore, the encapsulation of ACE polysaccharides by chitosan-silica nanoparticles may provide a viable approach for enhancing anti-tumor efficacy in liver cancer cells.  相似文献   
3.
Single crystals of recombinant Escherichia coli ornithine transcarbamoylase suitable for x-ray analysis have been grown from polyethylene glycol and 2-methyl-2,4-pentanediol. The space group has been determined as P3(1) or P3(2), with one protein trimer of three identical 36.8-kDa subunits in the asymmetric unit. The unit cell dimensions are a = b = 105.1 A and c = 87.8 A. The crystals diffract well to 3-A resolution and are quite resistant to radiation damage. Single crystals have also been grown of a genetically engineered site-specific mutant for which the replacement of an arginine (Arg-57) to a glycine has been shown to not only drastically affect the enzyme activity but also its kinetic mechanism (Kuo, L. C., Miller, A. W., Lee, S., and Kozuma, C. (1988) Biochemistry 27, 8823-8832). The crystals of the Arg-57----Gly mutant protein are isomorphous to those of the wild type. Crystal soaking experiments using both wild-type and Arg-57----Gly crystals in the presence of various ligands have provided evidence of specific conformational changes upon substrate binding which supports our previous kinetic and spectroscopic observations.  相似文献   
4.
5.
In Saccharomyces cerevisiae, Rtt109, a lysine acetyltransferase (KAT), associates with a histone chaperone, either Vps75 or Asf1. It has been proposed that these chaperones alter the selectivity of Rtt109 or which residues it preferentially acetylates. In the present study, we utilized a label-free quantitative mass spectrometry-based method to determine the steady-state kinetic parameters of acetylation catalyzed by Rtt109-Vps75 on H3 monomer, H3/H4 tetramer, and H3/H4-Asf1 complex. These results show that among these histone conformations, only H3K9 and H3K23 are significantly acetylated under steady-state conditions and that Asf1 promotes H3/H4 acetylation by Rtt109-Vps75. Asf1 equally increases the Rtt109-Vps75 specificity for both of these residues with a maximum stoichiometry of 1:1 (Asf1 to H3/H4), but does not alter the selectivity between these two residues. These data suggest that the H3/H4-Asf1 complex is a substrate for Rtt109-Vps75 without altering selectivity between residues. The deletion of either Rtt109 or Asf1 in vivo results in the same reduction of H3K9 acetylation, suggesting that Asf1 is required for efficient H3K9 acetylation both in vitro and in vivo. Furthermore, we found that the acetylation preference of Rtt109-Vps75 could be directed to H3K56 when those histones already possess modifications, such as those found on histones purified from chicken erythrocytes. Taken together, Vps75 and Asf1 both enhance Rtt109 acetylation for H3/H4, although via different mechanisms, but have little impact on the residue selectivity. Importantly, these results provide evidence that histone chaperones can work together via interactions with either the enzyme or the substrate to more efficiently acetylate histones.  相似文献   
6.
7.

Background

The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3’s action remain unanswered.

Results

We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants.

Conclusions

Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on mitochondria.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0152-0) contains supplementary material, which is available to authorized users.  相似文献   
8.
9.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   
10.
The yeast SOC8-1 gene was originally identified by partial complementation of cdc8 mutant strains. We have carried out Bal31 deletion analysis of the SOC8-1 gene to define the minimal size which is required for the complementation of the cdc8 mutation. When the SOC8-1 gene is cloned in a multicopy plasmid, it enables temperature-resistant growth in the cdc8 mutant strain, while the SOC8-1 gene in a single copy plasmid does not. Thus, its suppression of the cdc8 mutant is dosage dependent. The high copy number vector carrying the SOC8-1 gene can complement five different cdc8 alleles, indicating that the suppression is not allele specific. Since CDC8 encodes thymidylate kinase, cells bearing a high copy number plasmid containing SOC8-1 gene were tested for the ability to phosphorylate several nucleoside monophosphates, including UMP, GMP and dTMP. Significantly increased phosphorylation activity was observed, suggesting that SOC8-1 encodes a nucleotide kinase. Both restriction enzyme analysis of the SOC8-1 gene and partial purification of the overproduced kinase in SOC8-1 overproducing strains suggest that SOC8-1 may be allelic with URA6. Consistent with these results, both SOC8-1 and URA6 are located on chromosome XI. Thus, one possible suppression mechanism is that SOC8-1 may provide a trans-acting dTMP kinase activity, bypassing the cdc8 gene defect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号