首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   7篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1984年   2篇
  1982年   1篇
  1978年   2篇
  1976年   1篇
  1972年   1篇
排序方式: 共有98条查询结果,搜索用时 46 毫秒
1.
2.
For multiple-brooded species, the number of reproductive events per year is a major determinant of an individual''s fitness. Where multiple brooding is facultative, its occurrence is likely to change with environmental conditions, and, as a consequence, the current rates of environmental change could have substantial impacts on breeding patterns. Here we examine temporal population-level trends in the proportion of female great tits (Parus major) producing two clutches per year (‘double brooding’) in four long-term study populations in The Netherlands, and show that the proportion of females that double brood has declined in all populations, with the strongest decline taking place in the last 30 years of the study. For one of the populations, for which we have data on caterpillar abundance, we show that the probability that a female produces a second clutch was related to the timing of her first clutch relative to the peak in caterpillar abundance, and that the probability of double brooding declined over the study period. We further show that the number of recruits from the second clutch decreased significantly over the period 1973–2004 in all populations. Our results indicate that adjustment to changing climatic conditions may involve shifts in life-history traits other than simply the timing of breeding.  相似文献   
3.
Climate warming has been shown to affect the timing of the onset of breeding of many bird species across the world. However, for multi‐brooded species, climate may also affect the timing of the end of the breeding season, and hence also its duration, and these effects may have consequences for fitness. We used 28 years of field data to investigate the links between climate, timing of breeding, and breeding success in a cooperatively breeding passerine, the superb fairy‐wren (Malurus cyaneus). This multi‐brooded species from southeastern Australia has a long breeding season and high variation in phenology between individuals. By applying a “sliding window” approach, we found that higher minimum temperatures in early spring resulted in an earlier start and a longer duration of breeding, whereas less rainfall and more heatwaves (days > 29°C) in late summer resulted in an earlier end and a shorter duration of breeding. Using a hurdle model analysis, we found that earlier start dates did not predict whether or not females produced any young in a season. However, for successful females who produced at least one young, earlier start dates were associated with higher numbers of young produced in a season. Earlier end dates were associated with a higher probability of producing at least one young, presumably because unsuccessful females kept trying when others had ceased. Despite larger scale trends in climate, climate variables in the windows relevant to this species’ phenology did not change across years, and there were no temporal trends in phenology during our study period. Our results illustrate a scenario in which higher temperatures advanced both start and end dates of individuals’ breeding seasons, but did not generate an overall temporal shift in breeding times. They also suggest that the complexity of selection pressures on breeding phenology in multi‐brooded species may have been underestimated.  相似文献   
4.
In intraspecific competition, the sex of competing individuals is likely to be important in determining the outcome of competitive interactions and the way exposure to conspecifics during development influences adult fitness traits. Previous studies have explored differences between males and females in their response to intraspecific competition. However, few have tested how the sex of the competitors, or any interactions between focal and competitor sex, influences the nature and intensity of competition. We set up larval seed beetles Callosobruchus maculatus to develop either alone or in the presence of a male or female competitor and measured a suite of traits: development time, emergence weight; male ejaculate mass, copulation duration, and lifespan; and female lifetime fecundity, offspring egg–adult survival, and lifespan. We found effects of competition and competitor sex on the development time and emergence weight of both males and females, and also of an interaction between focal and competitor sex: Females emerged lighter when competing with another female, while males did not. There was little effect of larval competition on male and female adult fitness traits, with the exception of the effect of a female competitor on a focal female's offspring survival rate. Our results highlight the importance of directly measuring the effects of competition on fitness traits, rather than distant proxies for fitness, and suggest that competition with the sex with the greater resource requirements (here females) might play a role in driving trait evolution. We also found that male–male competition during development resulted in shorter copulation times than male–female competition, a result that remained when controlling for the weight of competitors. Although it is difficult to definitively tease apart the effects of social environment and access to resources, this result suggests that something about the sex of competitors other than their size is driving this pattern.  相似文献   
5.
Discrete behavioral strategies comprise a suite of traits closely integrated in their expression with consistent natural selection for such coexpression leading to developmental and genetic integration of their components. However, behavioral traits are often also selected to respond rapidly to changing environments, which should both favor their context-dependent expression and inhibit evolution of genetic integration with other, less flexible traits. Here we use a multigeneration pedigree and long-term data on lifetime fitness to test whether behaviors comprising distinct dispersal strategies of western bluebirds—a species in which the propensity to disperse is functionally integrated with aggressive behavior—are genetically correlated. We further investigated whether selection favors flexibility in the expression of aggression in relation to current social context. We found a significant genetic correlation between aggression and dispersal that is concordant with consistent selection for coexpression of these behaviors. To a limited extent, individuals modified their aggression to match their mate; however, we found no fitness consequences on such adjustments. These results introduce a novel way of viewing behavioral strategies, where flexibility of behavior, while often aiding an organism's fit in its current environment, may be limited and thereby enable integration with less flexible traits.  相似文献   
6.
7.
Inbreeding depression plays a major role in shaping mating systems: in particular, inbreeding avoidance is often proposed as a mechanism explaining extra‐pair reproduction in socially monogamous species. This suggestion relies on assumptions that are rarely comprehensively tested: that inbreeding depression is present, that higher kinship between social partners increases infidelity, and that infidelity reduces the frequency of inbreeding. Here, we test these assumptions using 26 years of data for a cooperatively breeding, socially monogamous bird with high female infidelity, the superb fairy‐wren (Malurus cyaneus). Although inbred individuals were rare (~6% of offspring), we found evidence of inbreeding depression in nestling mass (but not in fledgling survival). Mother–son social pairings resulted in 100% infidelity, but kinship between a social pair did not otherwise predict female infidelity. Nevertheless, extra‐pair offspring were less likely to be inbred than within‐pair offspring. Finally, the social environment (the number of helpers in a group) did not affect offspring inbreeding coefficients or inbreeding depression levels. In conclusion, despite some agreement with the assumptions that are necessary for inbreeding avoidance to drive infidelity, the apparent scarcity of inbreeding events and the observed levels of inbreeding depression seem insufficient to explain the ubiquitous infidelity in this system, beyond the mother–son mating avoidance.  相似文献   
8.
Parental effects on offspring performance have been attributed to many factors such as parental age, size and condition. However, we know little about how these different parental characteristics interact to determine parental effects, or the extent to which their effect on offspring depends on either the sex of the parent or that of the offspring. Here we experimentally tested for effects of variation in parents’ early diet and inbreeding levels, as well as effects of parental age, and for potential interactive effects of these three factors on key aspects of offspring development in the mosquitofish (Gambusia holbrooki). Older mothers produced offspring that were significantly smaller at birth. This negative effect of maternal age on offspring size was still evident at maturation as older mothers had smaller daughters, but not smaller sons. The daughters of older mothers did, however, reach maturity sooner. Paternal age did not affect offspring body size, but it had a complex effect on their sons’ relative genital size. When initially raised on a food‐restricted diet, older fathers sired sons with relatively smaller genitalia, but when fathers were initially raised on a control diet their sons had relatively larger genitalia. The inbreeding status of mothers and fathers had no significant effects on any of the measured offspring traits. Our results indicate that the manifestation of parental effects can be complex. It can vary with both parent and offspring sex; can change over an offspring's life; and is sometimes evident as an interaction between different parental traits. Understanding this complexity will be important to predict the role of parental effects in adaptation.  相似文献   
9.
Although hormones are key regulators of many fitness and life history traits, the causes of individual level variation in hormones, particularly in wild systems, remain understudied. Whilst we know that androgen and glucocorticoid levels vary within and among individuals in mammalian populations, how this relates to key reproductive processes such as gestation and lactation, and their effects on a female''s measurable hormone levels are poorly understood in wild systems. Using fecal samples collected from females in a wild red deer population between 2001 and 2013, we explore how fecal androgen (FAM) and cortisol (FCM) metabolite concentrations change with age and season, and how individual differences relate to variation in reproductive state. Both FAM and FCM levels increase toward parturition, although this only affects FCM levels in older females. FCM levels are also higher when females suckle a male rather than a female calf, possibly due to the higher energetic costs of raising a son. This illustrates the importance of accounting for a female''s life history and current reproductive status, as well as temporal variation, when examining individual differences in hormone levels. We discuss these findings in relation to other studies of mammalian systems and in particular to the relatively scarce information on variation in natural levels of hormones in wild populations.  相似文献   
10.
Describing natural selection on phenotypic traits under varying environmental conditions is essential for a quantitative assessment of the scale at which adaptation might occur and of the impact of environmental variability on evolution. Here we analyzed patterns of multivariate selection via fecundity and viability on three reproductive traits (laying date, clutch size, and egg weight) in a population of great tits (Parus major). We quantified selection under different environmental conditions using (1) local variation in breeding density and (2) distinct areas of the population's habitat. We found that selection gradients were generally stronger for fecundity than for viability selection. We also found correlational selection acting on the combination of laying date and clutch size; this is the first documented evidence of such selection acting on these two traits in a passerine bird. Our analyses showed that both local breeding density and habitat significantly influenced selection patterns, hence favoring different patterns of reproductive investment at a small-scale relative to typical dispersal distances in this species. Canonical rotation of the nonlinear selection matrices yielded similar conclusions as traditional nonlinear selection analyses, and also showed that the main axes of selection and fitness surfaces varied over space within the population. Our results emphasize the importance of quantifying different forms of selection, and of including variation in environmental conditions at small scales to gain a better understanding of potential evolutionary dynamics in wild populations. This study suggests that the fitness landscape for this species is relatively rugged at scales relevant to the life histories of individual birds and their close relatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号