首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   22篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   13篇
  2003年   16篇
  2002年   17篇
  2001年   13篇
  2000年   12篇
  1999年   12篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   12篇
  1991年   9篇
  1990年   15篇
  1989年   7篇
  1988年   9篇
  1987年   16篇
  1986年   12篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   2篇
  1980年   15篇
  1979年   8篇
  1978年   17篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
排序方式: 共有290条查询结果,搜索用时 562 毫秒
1.
To obtain insight into the role of lipids in the translocation of extramitochondrially synthesized proteins, we studied the ability of apocytochrome c to pass lipid bilayers. With polyacrylamide gel electrophoresis, the digestion of externally added apocytochrome c by trypsin, enclosed in lipid vesicles, was followed. The experiments demonstrate that apocytochrome c is able to pass a lipid barrier and this process shows both a lipid- and protein specificity. The most probable molecular mechanisms involved in this phenomenon are discussed.  相似文献   
2.
The stoichiometric palmitoyllysophosphatidylcholine (lysoPC)/gramicidin (4:1, mol/mol) lamellar complex (Killian, J.A., De Kruijff, B., Van Echteld, C.J.A., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1983) Biochim. Biophys. Acta 728, 141-144) is a useful model system to investigate the various aspects of lipid protein interactions. To study the effect of gramicidin on local order and motion of 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC) we employed 31P and 2H nuclear magnetic resonance (NMR) using selectively deuterated lysoPC's and we compared the results to those obtained for lysoPC in bilayers with cholesterol (1:1, mol/mol) and dipalmitoylphosphatidylcholine (DPPC) (1:4, mol/mol). 2H-NMR experiments on acyl chain deuterated lysoPC showed similar quadrupole splittings in the liquid crystalline state for the lysoPC/DPPC and the lysoPC/gramicidin samples. In the lysoPC/cholesterol sample an increase of the quadrupole splitting was found. T1 measurements showed that gramicidin decreases the lysoPC acyl chain motion, especially at the C12 position. In the lysoPC/cholesterol sample an increase of motion was observed as compared to lysoPC in fluid bilayers of DPPC. 31P-NMR and 2-H-NMR measurements of lysoPC, deuterated at the alpha- and beta-position of the choline moiety, indicated an increase in headgroup flexibility in all samples as compared to the parent compound DPPC. In addition, a change in headgroup conformation was observed. The alpha- and beta-segments in all samples exhibited concerted motion. It was found that also in the polar headgroup gramicidin induces a decrease of the rate of motion.  相似文献   
3.
The lipid dependency of apocytochrome c binding to model membranes and of the translocation of the precursor protein across these membranes was studied by using large unilamellar, trypsin-containing vesicles. These vesicles were improved with respect to those used in a previous article (Rietveld, A., and de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6706), in the sense that a lower amount of trypsin was enclosed. In mixed egg phosphatidylcholine/bovine brain phosphatidylserine vesicles, both the Kd of apocytochrome c binding (about 20 microM) and the number of phosphatidylserine molecules interacting with the protein was found to be constant. When the phosphatidylserine fraction in the vesicles is more than 15-30% apocytochrome c addition results in the exposure of (a part of) the protein to the internal, trypsin-containing vesicle medium, which process we conceive as a translocation event. Also the interaction of apocytochrome c with vesicles composed of phosphatidylcholine and another acidic phospholipid in a 1:1 ratio, leads to the translocation of the protein across the model membrane. The affinity of this binding was found to be in the order cardiolipin greater than phosphatidylglycerol greater than phosphatidylinositol greater than phosphatidylserine. By varying the lipid composition of the vesicles, it could be demonstrated that the translocation requires a fluid bilayer. In addition, protein specificity was shown for the translocation process. Although apocytochrome c-lipid interaction causes vesicle aggregation, fusion by lipid mixing could not be detected. Due to the apocytochrome c-lipid interaction also, protein aggregates and oligomers have been formed. These results will be discussed in the light of a model for translocation of a precursor protein across a model membrane. The relevance for the mitochondrial system will also be discussed.  相似文献   
4.
At calcium concentrations up to about 4 mM a selective permeability increase of cardiolipin/dioleoylphosphatidylcholine (50:50, mol%) membranes for calcium and its chelator arsenazo III is observed. Under these conditions calcium does not occupy all the binding sites of cardiolipin at the membrane interface and no vesicle-vesicle interactions are found. Lowering of the cardiolipin content of the vesicles to 20 mol% extends the calcium concentration range in which a selective permeability for calcium and arsenazo III is appearing up to about 12 mM. We suggest that the observed selective permeability increase is caused by transient formation of inverted micellar structures in the membrane with cardiolipin as translocating membrane component for calcium and arsenazo III. At calcium concentrations of 4 mM and higher for 50 mol% cardiolipin-containing vesicles a general permeability increase is found together with calcium-cardiolipin binding in a 1:1 stoichiometry, vesicles aggregation and, above 8 mM of calcium, vesicle fusion. The loss of barrier function of the membrane under these conditions is correlated with vesicle aggregation and may be explained by a transition from a bilayer into a hexagonal HII organization of the phospholipids.  相似文献   
5.
The inhibition of respiratory chain activities in rat liver, rat heart and bovine heart mitochondria by the anthracycline antibiotic adriamycin was measured in order to determine the adriamycin-sensitive sites. It appeared that complex III and IV are efficiently affected such that their activities were reduced to 50% of control values at 175 +/- 25 microM adriamycin. Complex I displayed a minor sensitivity to the drug. Of the complex-I-related activities tested, only duroquinone oxidation appeared sensitive (50% inhibition at approx. 450 microM adriamycin). Electron-transfer activities catalyzed by complex II remained essentially unaltered up to high drug concentrations. Of the activities measured for this complex, only duroquinone oxidation was significantly affected. However, the adriamycin concentration required to reduce this activity to 50% exceeded 1 mM. Mitochondria isolated from rat liver, rat heart and bovine heart behaved essentially identical in their response to adriamycin. These data support the conclusion that, in these three mitochondrial systems, the major drug-sensitive sites lie in complex III and IV. Cytochrome c oxidase and succinate oxidase activity in whole mitochondria exhibited a similar sensitivity towards adriamycin, as inner membrane ghosts, suggesting that the drug has direct access to its inner membrane target sites irrespective of the presence of the outer membrane. By measuring NADH and succinate oxidase activities in the presence of exogenously added cytochrome c, it appeared that adriamycin was less inhibitory under these conditions. This suggests that adriamycin competes with cytochrome c for binding to the same site on the inner membrane, presumably cardiolipin.  相似文献   
6.
Addition of gramicidin in sufficient concentration from dimethylsulfoxide or trifluoroethanol to isolated erythrocyte membranes induces hexagonal HII phase formation for the phospholipids. In contrast, addition from ethanol does not change the overall bilayer organization despite a similar extent of peptide incorporation. The same solvent dependence is observed for the enhancement of transbilayer reorientation of lysophospholipids and unspecific leak formation in intact erythrocytes at lower gramicidin concentrations. These results indicate that the (beta 6.3) conformation of the peptide is essential for all three membrane perturbing effects.  相似文献   
7.
The effect of gramicidin on macroscopic structure of the negatively charged membrane phospholipids cardiolipin, dioleoylphosphatidylglycerol and dioleoylphosphatidylserine in aqueous dispersions was investigated and compared with the effect of gramicidin on dioleoylphosphatidylcholine. It was shown by small-angle X-ray diffraction, 31P nuclear magnetic resonance and freeze-fracture electron microscopy that in all these lipid systems gramicidin is able to induce the formation of a hexagonal HII phase. 31P-NMR measurements indicated that the extent of HII phase formation in the various lipids ranged from about 40% to 60% upon gramicidin incorporation in a molar ratio of peptide to lipid of 1 : 10. Next, the following charged analogues of gramicidin were prepared: desformylgramicidin, N-succinylgramicidin and O-succinylgramicidin. The synthesis was verified with 13C-NMR and the effect of these analogues on lipid structure was investigated. It was shown that, as with gramicidin itself, the analogues induce HII phase formation in dioleoylphosphatidylcholine, lower and broaden the bilayer-to-HII phase transition in dielaidoylphosphatidylethanolamine and form lamellar structures upon codispersion with palmitoyllysophosphatidylcholine. Differential scanning calorimetry measurements indicated that, again like gramicidin, in phosphatidylethanolamine the energy content of the gel-to-liquid-crystalline phase transition is not affected by incorporation of the analogues, whereas in phosphatidylcholine a reduction of the transition enthalpy is found. These observations were explained in terms of a similar tendency to self-associate for gramicidin and its charged analogues. The results are discussed in the light of the various factors which have been suggested to be of importance for the modulation of lipid structure by gramicidin.  相似文献   
8.
The interaction of apocytochrome c with aqueous dispersions of phosphatidylserine from bovine spinal cord and with other negatively charged phospholipids has been studied as a function of pH and salt concentration by using spin-label electron spin resonance (ESR) spectroscopy and chemical binding assays. The ESR spectra of phospholipids spin-labeled at different positions on the sn-2 chain indicate a generalized decrease in mobility of the lipids, while the characteristic flexibility gradient toward the terminal methyl end of the chain is maintained, on binding of apocytochrome c to phosphatidylserine dispersions. This perturbation of the bulk lipid mobility or ordering is considerably greater than that observed on binding of cytochrome c. In addition, a second, more motionally restricted, lipid component is observed with lipids labeled close to the terminal methyl ends of the chains. This second component is not observed on binding of cytochrome c and can be taken as direct evidence for penetration of apocytochrome c into the lipid bilayer. It is less strongly motionally restricted than similar spectral components observed with integral membrane proteins and displays a steep flexibility gradient. The proportion of this second component increases with increasing protein-to-lipid ratio, but the stoichiometry per protein bound decreases from 4.5 lipids per 12 000-dalton protein at low protein contents to 2 lipids per protein at saturating amounts of protein. Apocytochrome c binding to phosphatidylserine dispersions decreases with increasing salt concentration from a saturation value corresponding to approximately 5 lipids per protein in the absence of salt to practically zero at 0.4 M NaCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
An adapted version of the Ca2+-influx assay of Weissmann et al. (Weissmann, G., Anderson, P., Serhan, C., Samuelson, E. and Goodman, E. (1980) Proc. Natl. Acad. Sci. USA 77, 1506-1510) is presented for studies on the possible ionophoretic properties of acidic phospholipids. This method is based on the use of the metallochromic dye arsenazo III enclosed in liposomal vesicles, to indicate the Ca2+ influx. An essential control is introduced to discriminate between Ca2+-arsenazo III complex formation inside the vesicles, as a consequence of Ca2+ influx, and outside the vesicles, as a consequence of arsenazo III leakage from the vesicles. Furthermore, some minor improvements are added, like the use of large unilamellar vesicles instead of multilamellar vesicles, and the use of dual wavelength spectrophotometry. Using this method, it was found that dioleoylphosphatidylcholine vesicles, containing 20 mol% dioleoylphosphatidylglycerol, were impermeable to Ca2+. In this system a selective Ca2+ permeability could be induced by the addition of the fungal Ca2+ ionophore A23187. In contrast, dioleoylphosphatidylcholine vesicles, containing 20 mol% dioleoylphosphatidic acid, incubated in the presence of Ca2+ were permeable to both Ca2+ and arsenazo III.  相似文献   
10.
The interaction between poly(l-lysines) of varying size with cardiolipin was investigated via binding assays, X-ray diffraction, freeze-fracture electron microscopy, and 31P- and 13C-NMR. Binding of polylysines to the lipid only occurred when three or more lysine residues were present per molecule. The strength of the binding was highly dependent on the polymerization degree, suggesting a cooperative interaction of the lysines within the polymer. Upon binding, a structural reorganization of the lipids takes place, resulting in a closely packed multilamellar system in which the polylysines are sandwiched in between subsequent bilayers. Acyl chain motion is reduced in these liquid-crystalline peptide-lipid complexes. From competition experiments with Ca2+ it could be concluded that when the affinity of the polylysine for cardiolipin was much larger than that of Ca2+, a lamellar polylysine-lipid complex was formed, irrespective of whether an excess of Ca2+ was added prior to or after the polypeptide. When the affinity of the polylysine for cardiolipin was less or of the same order as that of Ca2+, the lipid was organized in the hexagonal HII phase in the presence of Ca2+. These results are discussed in the light of the peptide specificity of bilayer (de)stabilization in cardiolipin model membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号