首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3235篇
  免费   405篇
  国内免费   2篇
  2021年   64篇
  2020年   37篇
  2019年   55篇
  2018年   66篇
  2017年   63篇
  2016年   96篇
  2015年   160篇
  2014年   175篇
  2013年   171篇
  2012年   205篇
  2011年   200篇
  2010年   138篇
  2009年   108篇
  2008年   184篇
  2007年   172篇
  2006年   155篇
  2005年   136篇
  2004年   131篇
  2003年   131篇
  2002年   128篇
  2001年   50篇
  2000年   44篇
  1999年   65篇
  1998年   39篇
  1997年   30篇
  1996年   23篇
  1995年   26篇
  1994年   19篇
  1993年   26篇
  1992年   51篇
  1991年   39篇
  1990年   37篇
  1989年   39篇
  1988年   35篇
  1987年   45篇
  1986年   30篇
  1985年   29篇
  1984年   30篇
  1983年   23篇
  1982年   17篇
  1981年   26篇
  1980年   15篇
  1979年   38篇
  1978年   30篇
  1977年   23篇
  1975年   15篇
  1972年   17篇
  1971年   16篇
  1970年   20篇
  1968年   19篇
排序方式: 共有3642条查询结果,搜索用时 15 毫秒
1.
In cell extracts of Methanobacterium thermoautotrophicum, formylmethanofuran (formyl-MFR) synthesis (an essential CO2 fixation reaction that is an early step in CO2 reduction to methane) is subject to a complex activation that involves a heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine O3-phosphate (CoM-S-S-HTP). In this paper we report that titanium(III) citrate, a low-potential reducing agent, stimulated CO2 reduction to methane and activated formyl-MFR synthesis in cell extracts. Titanium(III) citrate functioned as the sole source of electrons for formyl-MFR synthesis and enabled this reaction to occur independently of CoM-S-S-HTP. In addition, CoM-S-S-HTP was found to activate an unknown electron carrier that reduced metronidazole. The activation of formyl-MFR synthesis by CoM-S-S-HTP may involve the activation of a low-potential electron carrier.  相似文献   
2.
Alzheimer’s disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice—70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.  相似文献   
3.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   
4.
The β-cells of the pancreas are responsible for insulin production and their destruction results in type I diabetes. β-cell maintenance, growth and regenerative repair is thought to occur predominately, if not exclusively, through the replication of existing β-cells, not via an adult stem cell. It was recently found that all β-cells contribute equally to islet growth and maintenance. The fact that all β-cells replicate homogeneously makes it possible to set up straightforward screens for factors that increase β-cell replication either In vitro or in vivo . It is possible that a circulating factor may be capable of increasing β-cell replication or that intrinsic cell cycle regulators may affect β-cell growth. An improved understanding of the in vivo maintenance and growth of β-cells will facilitate efforts to expand β-cells In vitro and may lead to new treatments for diabetes.  相似文献   
5.
6.
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non‐neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double‐labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 68–79, 2002  相似文献   
7.
8.
The effect of food deprivation on enzyme activity in developing brain   总被引:2,自引:1,他引:1  
Brain and body weights, contents of DNA and protein and activities of 1,6-diphosphofructoaldolase (aldolase, EC 4.1.2.13), creatine phosphokinase (CPK, EC 2.7.3.2), and isocitric dehydrogenase (ICD, EC 1.1.1.42) in brain (minus cerebellum and brain stem) were studied in control and food-deprived rats at 7, 14 and 21 days of postnatal age. Activities of all three enzymes per brain were less in the food-deprived animals. In both groups of rats the ratios of aldolase/DNA and CPK/DNA increased with maturation, indicating that increasing activity per brain during maturation was the result of both increased activity per cell and increased numbers of cells. The ratio of ICD/DNA decreased with maturation but was essentially the same in both the food-deprived and control groups. Increase of ICD activity per brain with maturation was attributable to increased numbers of cells. Food deprivation in immature animals resulted in lowered activities per brain for aldolase, CPK and ICD because of diminished cell multiplication.  相似文献   
9.
10.
We have previously shown a favorable association of subcutaneous leg fat with markers of insulin resistance and dyslipidemia in postmenopausal women. It is not known whether there is a sex dimorphism in the association of lower‐body adiposity with reduced metabolic risk. Thus, our primary aim was to determine whether the favorable association of thigh subcutaneous fat, independent of abdominal fat, is also observed in older men. Mid‐thigh and abdominal fat areas were measured by computed tomography (CT) in 108 older men and postmenopausal women (mean ± s.d.; 69 ± 7 years). Additionally, trunk and leg fat mass (FM) were measured by dual‐energy X‐ray absorptiometry (DXA). Markers of insulin resistance and dyslipidemia were determined from oral glucose tolerance tests and lipid and lipoprotein measurements, respectively. Outcomes were fasted and postchallenge (area under the curve, AUC) insulin (INSAUC) and glucose (GLUAUC), product of the insulin and glucose AUC (INSAUC × GLUAUC), triglycerides (TG), and high‐density lipoprotein (HDL)‐cholesterol. Consistent with our previous findings in postmenopausal women, adjusting for DXA trunk FM revealed a favorable association of DXA leg FM with the metabolic risk outcomes in both older men and postmenopausal women. Likewise, adjusting for CT abdominal visceral fat generally revealed a favorable association of CT thigh fat with metabolic risk outcomes in women, but not men. The discordance between the DXA and CT results in men is unclear but may be due to sex differences in visceral fat accrual. The mechanisms underlying the protective effect of thigh fat on metabolic risk factors need to be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号