首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1995年   1篇
  1990年   1篇
  1973年   1篇
排序方式: 共有28条查询结果,搜索用时 531 毫秒
1.
Abstract.
  • 1 Spatial and temporal variation in body size of yellow dungflies, Scatophaga stercoraria, gathering on and around cow droppings was studied in an Icelandic population in order to elucidate the effect of male and female size on male mating tactics.
  • 2 Males copulating on droppings were on average larger than males copulating in the grass, but of similar size to males guarding ovipositing females. Males searching on droppings were smaller than males copulating or guarding females on droppings but larger than males copulating in the grass. No such differences were found in female size.
  • 3 Resource-holding power of males (RHP, i.e. male: female size ratio) differed between the three mating groups and was highest for males on the droppings. Size and RHP clearly affect the tactics of copulating males. Males with low RHP tend to copulate in the grass in spite of the cost of longer copulation duration. We argue that this is caused by risk of takeovers from large searching males.
  • 4 There was no change in male size with the age of individual droppings. Contrary to what might be expected, large searching males are not predominantly found at fresh droppings when the probability of catching unpaired females is highest. We suggest instead that good prospects in taking females over from other males must make the strategy to search for females on older droppings profitable.
  • 5 RHP did not change with age of dropping in the three mating groups. The size of ovipositing females increased with age of dropping, probably reflecting longer copulation and egg-laying times of large females.
  • 6 We found an overall positive relationship between sizes of male and female partners. This correlation was highly significant for copulating pairs in the grass. This is probably a consequence of males with low RHP copulating in the grass and fights in which larger males take over females from smaller males. A weaker, but significant, correlation was found amongst ovipositing pairs. This must be due to take-over effects. No size correlation was found for pairs copulating on droppings.
  相似文献   
2.
Previous univariate studies of the yellow dung fly (Scathophaga stercoraria) have demonstrated strong sexual selection, in terms of mating success, on male size (estimated as hind tibia length). To identify specific target(s) of selection on body size and possible conflicting selection pressures on particular body parts, two multivariate field studies of sexual selection were conducted. In one study using point samples from three populations, we assessed several morphological traits, including genital traits and measures of fluctuating asymmetry (FA) of all paired traits. There was sexual selection for large male size in general, confirming previous, univariate studies. With the possible exception of thorax width, which was selected in the opposite direction, no main target of selection was identified, as most morphological traits were highly correlated. There was no detectable sexual selection on the male external genital structures assessed. In a second study using multiple samples from one population, we included physiological measures of energy reserves (lipids, glucose and glycogen) known to affect mating success, in addition to trait size and FA of wings and legs. Inclusion of physiological traits is rare in phenomenological studies of selection. This study again confirmed the mating advantage of large males, and additionally showed independent positive influences of lipid and glucose but not glycogen levels. FA in paired traits generally did not affect male mating success, but was negatively correlated with energy reserves. Our study suggests that inclusion of physiological measures and genital traits in phenomenological studies of selection would be fruitful in other species.  相似文献   
3.
For studying heart pathologies on the cellular level, cultured adult cardiac myocytes represent an important approach. We aimed to explore a novel adult rat ventricular myocyte culture system with minimised dedifferentiation allowing extended experimental manipulation of the cells such as expression of exogenous proteins. Various culture conditions were investigated including medium supplement, substrate coating and electrical pacing for one week. Adult myocytes were probed for (i) viability, (ii) morphology, (iii) frequency dependence of contractions, (iv) Ca(2+) transients, and (v) their tolerance towards adenovirus-mediated expression of the Ca(2+) sensor "inverse pericam". Conventionally, in either serum supplemented or serum-free medium, myocytes dedifferentiated into flat cells within 3 days or cell physiology and morphology were impaired, respectively. In contrast, myocytes cultured in medium supplemented with an insulin-transferrin-selenite mixture on substrates coated with extracellular matrix proteins showed an increased cell attachment and a conserved cross-striation. Moreover, these myocytes displayed optimised preservation of their contractile behaviour and Ca(2+) signalling even under conditions of continuous electrical pacing. Sustained expression of inverse pericam did not alter myocyte function and allowed long lasting high speed Ca(2+) imaging of electrically driven adult myocytes. Our single-cell model thus provides a new advance for high-content screening of these highly specialised cells.  相似文献   
4.
Parasitic plants can significantly influence the species to which they attach. The host response is variable however, and ranges from death of the host to no detectable effects in terms of both growth and physiology. The parasite can directly influence its hosts through resource abstraction, and indirectly by influencing inter- and intra-specific interactions. Abiotic factors interact with these direct and indirect effects to moderate the potential outcome of the host parasite interaction. This paper sets out to review a series of experiments that have been undertaken in our laboratory over a number of years that examine these effects and help us to understand mechanisms underpinning the variability in host response.  相似文献   
5.
6.
Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC 6803 cells. After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non‐peptide structure. We propose that M22 possesses a dual‐action mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.  相似文献   
7.
The frequent occurrence of parallel phenotypic divergence in similar habitats is often evoked when emphasizing the role of ecology in adaptive radiation and speciation. However, because phenotypic plasticity can contribute to the observed pattern of divergence, confirmation of divergence at loci underlying phenotypic traits is important for confirming adaptive divergence. In the present study, we examine parallel morphological, neutral, and potentially adaptive genetic divergence of threespine stickleback inhabiting different habitats within a lake. Three genetic clusters best explained the neutral genetic structure within the lake; however, morphological differences were only weakly connected to genetic clusters and there was considerable phenotypic variation within clusters. Among the factors that could contribute to the observed pattern of morphological and genetic divergence are phenotypic plasticity, selective mortality of hybrids, and habitat choice based on morphology. Several loci are identified as outliers indicating divergent selection between the morphs and some parallels in morphological and adaptive genetic divergence are found in stickleback spawning at two lava sites. However, neutral genetic structure indicates considerable genetic connectivity among the two lava sites, and the parallels in morphology may therefore represent selective distribution of phenotypes rather than parallel divergence. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 803–813.  相似文献   
8.
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power at all frequencies above approximately 10 Hz and more synchrony between nearby neurons. Fast-spiking inhibitory interneurons discharged strongly in relation to higher-frequency oscillations in the field potential in vivo and possess membrane, synaptic, and action potential properties that are advantageous for transmission of higher-frequency activity. Intracellular injection of synaptic conductances having the characteristics of the recorded EPSPs and IPSPs reveal that IPSPs are important in controlling the timing and probability of action potential generation in pyramidal cells. Our results support the hypothesis that inhibitory networks are largely responsible for the dissemination of higher-frequency activity in cortex.  相似文献   
9.
Local adaptation of populations requires some degree of spatio-temporal isolation. Previous studies of the two dung fly species Scathophaga stercoraria and Sepsis cynipsea have revealed low levels of geographic and altitudinal genetic differentiation in quantitative life history and morphological traits, but instead high degrees of phenotypic plasticity. These patterns suggest that gene flow is extensive despite considerable geographic barriers and large spatio-temporal variation in selection on body size and related traits. In this study we addressed this hypothesis by investigating genetic differentiation of dung fly populations throughout Switzerland based on the same 10 electrophoretic loci in each species. Overall, we found no significant geographic differentiation of populations for either species. This is inconsistent with the higher rates of gene flow expected due to better flying capacity of the larger S. stercoraria. However, heterozygote deficiencies within populations indicated structuring on a finer scale, seen for several loci in S. cynipsea, and for the locus PGM (Phosphoglucomutase) in S. stercoraria. Additionally, S. cynipsea showed a tendency towards a greater gene diversity at higher altitudes, mediated primarily by the locus MDH (malate dehydrogenase), at which a second allele was only present in populations above 1000 m. This may be caused by increased environmental stress at higher altitudes in this warm-adapted species. MDH might thus be a candidate locus subject to thermal selection in this species, but this remains to be corroborated by direct evidence. In S. stercoraria, no altitudinal variation was found.  相似文献   
10.
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号