首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1920篇
  免费   95篇
  2021年   16篇
  2020年   6篇
  2019年   15篇
  2018年   22篇
  2017年   15篇
  2016年   39篇
  2015年   56篇
  2014年   54篇
  2013年   96篇
  2012年   113篇
  2011年   112篇
  2010年   67篇
  2009年   75篇
  2008年   98篇
  2007年   94篇
  2006年   93篇
  2005年   107篇
  2004年   125篇
  2003年   88篇
  2002年   74篇
  2001年   67篇
  2000年   52篇
  1999年   50篇
  1998年   23篇
  1997年   14篇
  1996年   21篇
  1995年   18篇
  1994年   22篇
  1993年   23篇
  1992年   35篇
  1991年   29篇
  1990年   20篇
  1989年   27篇
  1988年   30篇
  1987年   24篇
  1986年   22篇
  1985年   18篇
  1984年   15篇
  1983年   19篇
  1982年   11篇
  1981年   9篇
  1980年   14篇
  1979年   14篇
  1978年   7篇
  1977年   8篇
  1976年   6篇
  1974年   6篇
  1973年   7篇
  1971年   9篇
  1966年   5篇
排序方式: 共有2015条查询结果,搜索用时 15 毫秒
1.
Two polypeptide isoforms of myelin-associated glycoprotein (MAG) with molecular masses of 72 and 67 kDa are produced by alternative splicing of the exon 12 portion. Our previous work has demonstrated that in the quaking mouse brain this alternative splicing is lacking and that the mRNA coding the large MAG isoform (L-MAG) is scarcely expressed, whereas that of small MAG isoform (S-MAG) is overexpressed. In the present study, we prepared antisera specific to the S-MAG and L-MAG amino acid residues, respectively. Immunoblots showed that the L-MAG band was scarcely detectable in the quaking mouse brain, whereas the S-MAG band had an apparently higher molecular mass than in the normal control. Our immunohistochemical study also showed that L-MAG was scarcely stained in the quaking mouse brain. These results seemed to reflect a reduction in content of L-MAG mRNA and abnormal glycosylation in the quaking mouse brain.  相似文献   
2.
3.
Interconnection between surface microdomains and the actin cytoskeleton is vital to various cellular activities. We studied the responses of okadaic acid (OKA)-treated K562 leukemia cells to crosslinking of membrane microdomains. Although OKA alone induced clustering of surface-bound F-actin, addition of a biotinylated poly(ethylene glycol) derivative of cholesterol (bPEG-Chol) and subsequent binding of streptavidin (SA) further induced accumulation of the clusters, resulting in the formation of a spherical cell extrusion. This extrusion was also induced by direct crosslinking of a raft marker, CD59, and ganglioside GM1. In addition, we found that knockout of the gene encoding Fyn kinase inhibited formation of the spherical extrusion in murine T-cells. In bPEG-Chol/SA-treated cells, CD59, ganglioside GM1, and clathrin/AP-2 were all accumulated on the surface of the actin-rich extrusion, whereas dynamin and transferrin receptors were unaffected. Intermediate filaments, mitochondria, and other vesicles also accumulated. These results suggest that crosslinking of membrane domains exaggerates the linkage between actin and a defined set of membrane proteins in OKA-treated cells.  相似文献   
4.
A role for Atg8-PE deconjugation in autophagosome biogenesis   总被引:3,自引:0,他引:3  
Nair U  Yen WL  Mari M  Cao Y  Xie Z  Baba M  Reggiori F  Klionsky DJ 《Autophagy》2012,8(5):780-793
Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8-PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8-PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8-PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.  相似文献   
5.
A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control.  相似文献   
6.
Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein–protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca2 + concentration. The oligomerization of STIM1, which triggers extracellular Ca2 + influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca2 + concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca2 + concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca2 + concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca2 + influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca2 + loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca2 +-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.  相似文献   
7.
The biochemical requirements for epidermal growth factor (EGF) and transferrin receptor-mediated endocytosis were compared using perforated human A431 cells. Morphological studies showed that horseradish peroxidase (HRP)-conjugated EGF and gold-labeled antitransferrin (Tfn) receptor antibodies were colocalized during endocytosis in vitro. The sequestration of both ligands into deeply invaginated coated pits required ATP hydrolysis and cytosolic factors and was inhibited by GTP gamma S, indicating mechanistic similarities. Importantly, several differences in the biochemical requirements for sequestration of EGF and Tfn were also detected. These included differing requirements for soluble AP (clathrin assembly protein) complexes, differing cytosolic requirements, and differing sensitivities to the tyrosine kinase inhibitor, genistein. The biochemical differences detected between EGF and Tfn sequestration most likely reflect specific requirements for the recruitment of EGF-receptors (R) into coated pits. This assay provides a novel means to identify the molecular bases for these biochemical distinctions and to elucidate the mechanisms involved in ligand-induced recruitment of EGF-R into coated pits.  相似文献   
8.
Macrophage-stimulating protein (MSP) circulates as a proform protein and requires proteolytic processing for activation. Respiratory ciliated cells express the MSP receptor, recepteur d'origine nantais (RON), at the apical surface, which reportedly has an important role in ciliary function. Like RON, human airway trypsin-like protease (HAT) is also expressed at the apical surface of ciliated cells. Here we show that HAT cleaves proMSP at the physiological activation site, Arg483-Val484. MSP processed by HAT could induce chemotactic responses and morphological changes of peritoneal macrophages. In human respiratory epithelial cells, knock down of HAT expression reduced proMSP processing and RON autophosphorylation. We suggest that HAT is important for MSP-RON signaling in the respiratory tract.  相似文献   
9.
Hepcidin has emerged as the central regulatory molecule in systemic iron homeostasis. The inhibition of hepcidin may be a favorable strategy for the treatment of anemia of chronic disease. Here, we have reported the design, synthesis, and structure–activity relationships (SAR) of a series of 4-aminopyrimidine compounds as inhibitors of hepcidin production. The optimization study of 1 led to the design of a potent and bioavailable inhibitor of hepcidin production, 34 (DS42450411), which showed serum hepcidin-lowering effects in a mouse model of interleukin-6-induced acute inflammation.  相似文献   
10.

Background

Chronic kidney disease is an important concern in preventive medicine, but the rate of decline in renal function in healthy population is not well defined. The purpose of this study was to determine reference values for the estimated glomerular filtration rate (eGFR) and rate of decline of eGFR in healthy subjects and to evaluate factors associated with this decline using a large cohort in Japan.

Methods

Retrospective cross-sectional and longitudinal studies were performed with healthy subjects aged ≥18 years old who received a medical checkup. Reference values for eGFR were obtained using a nonparametric method and those for decline of eGFR were calculated by mixed model analysis. Relationships of eGFR decline rate with baseline variables were examined using a linear least-squares method.

Results

In the cross-sectional study, reference values for eGFR were obtained by gender and age in 72,521 healthy subjects. The mean (±SD) eGFR was 83.7±14.7ml/min/1.73m2. In the longitudinal study, reference values for eGFR decline rate were obtained by gender, age, and renal stage in 45,586 healthy subjects. In the same renal stage, there was little difference in the rate of decline regardless of age. The decline in eGFR depended on the renal stage and was strongly related to baseline eGFR, with a faster decline with a higher baseline eGFR and a slower decline with a lower baseline eGFR. The mean (±SD) eGFR decline rate was ‒1.07±0.42ml/min/1.73m2/year (‒1.29±0.41%/year) in subjects with a mean eGFR of 81.5±11.6ml/min/1.73m2.

Conclusions

The present study clarified for the first time the reference values for the rate of eGFR decline stratified by gender, age, and renal stage in healthy subjects. The rate of eGFR decline depended mainly on baseline eGFR, but not on age, with a slower decline with a lower baseline eGFR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号