首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   15篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   4篇
  2013年   1篇
  2011年   5篇
  2010年   10篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2001年   4篇
  2000年   7篇
  1999年   1篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1969年   3篇
  1968年   3篇
  1966年   2篇
  1963年   1篇
  1962年   1篇
  1951年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
A new tissue isolation technique was used to create intact midgut epithelial wholemounts from three Trichoplusia ni (Lepidoptera: Noctuidae) larval instars. The protease, dispase, removed the basal lamina and associated connective tissue and allowed for high resolution light microscopy of entire epithelia. Columnar, goblet, differentiating, and stem cells were characterized by double fluorescent labelling of f-actin and nuclei. A comparison of cell populations by digital image analysis revealed significant regional and temporal changes in the density and number of differentiating and stem cells. Growth of the midgut epithelium from third to fourth instar, and from fourth to fifth instar, was accomplished by both cell differentiation and cell division. Cell division however, was greatly reduced from fourth to fifth instar with a concomitant sharp decrease in the stem cell population.  相似文献   
3.
4.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
5.
Antibodies raised against purified rapeseed 19 kDa oleosin protein were used to screen an embryo-derived gt11 expression library from Brassica napus. A near full-length cDNA clone, BnV, was isolated. The 781 bp cDNA contained an open reading frame of 549 bp followed by an untranslated region of 222 pb and a poly(A) region of 10 bp. Comparisons between this cDNA and a different oleosin cDNA previously isolated from the same library showed high degrees of sequence similarity in the central domain region and in the 3 untranslated region. Sequence similarities between the derived protein sequence of this cDNA and all other known oleosin protein sequences are discussed.  相似文献   
6.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
7.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
8.
Natural enemies of herbivores function in a multitrophic context, and their performance is directly or indirectly influenced by herbivores and their host plants. Very little is known about tritrophic interactions between host plants, pests and their parasitoids, particularly when the host plants are under any stress. Herbivores and their natural enemies’ response to plants under stress are diverse and variable. Therefore, in this study we investigated how diamondback moth, Plutella xylostella (L.), reared on water‐stressed host plants (Brassica napus L. and Sinapis alba L.) influenced the development of its larval parasitoid, Diadegma insulare (Cresson). No significant differences were observed in development of Pxylostella when reared on water‐stressed host plants. However, all results indicated that water stress had a strong effect on developmental parameters of D. insulare. Development of D. insulare was delayed when the parasitoid fed on P. xylostella, reared on stressed host plants. Egg to adult development of D. insulare was faster on non‐stressed B. napus than non‐stressed S. alba followed by stressed B. napus and S. alba. Female parasitoids were heavier on non‐stressed host plants than stressed counterparts. Furthermore, the parasitoid lived significantly longer on stressed B. napus. However, body size was not affected by water treatment. Most host plant parameters measured were significantly lower for water‐stressed than non‐stressed treatments. Results suggest that development of this important and effective P. xylostella parasitoid was influenced by both water stress and host plant species.  相似文献   
9.
West African populations of Onchocerca volvulus endemic to the rain forest and savanna bioclimes of West Africa differ in their ability to induce ocular disease in infected individuals. In recent years, both clinical- and animal-model-based studies have implicated particular parasite antigens in the development of ocular onchocerciasis. To test the hypothesis that the difference in pathogenic potential of blinding and nonblinding parasites might be reflected in qualitative differences in antigens that have been implicated in the development of ocular onchocerciasis, we compared the sequences of two parasite antigens implicated in the development of ocular disease in blinding- and nonblinding-strain parasites. The results demonstrated a high level of homogeneity between the parasite strains in these genes. The study was extended to include additional nuclear genes encoding antigens that are commonly recognized by individuals infected with O. volvulus and to the mitochondrial genome of the parasite. The results demonstrate a high degree of homogeneity in both the nuclear and the mitochondrial genomes among O. volvulus isolates collected from several different sites in Africa and in the Americas. This high degree of genetic homogeneity may reflect the passage of the parasite through a recent genetic bottleneck.  相似文献   
10.
Two undescribed species of microsporidia were found in mass-reared Phytoseiulus persimilis Athias-Henriot from two commercial sources during a routine examination of these predators for pathogens. Both microsporidian species were described from specimens that had been prepared for transmission electron microscopy; live specimens were unavailable for examination. One microsporidium, identified as Species A, was described from two specimens obtained from a commercial insectary in North America. All observed stages of this microsporidium were uninucleate. Rounded-to-ovoid schizonts appeared to develop in direct contact with the cytoplasm of lyrate organ cells (ovarian tissue). Mature spores of Species A were elongate-ovoid and measured 2.88 x 1.21 microm. A polar filament coiled 7 to 10 times in the posterior half of the spore. Sporoblasts and spores were observed in the cytoplasm of cells of numerous tissues and in developing eggs within gravid females. A second species, identified as Species B, was described from five specimens obtained from a commercial source in Israel. All observed stages of this microsporidium were uninucleate. Schizonts of Species B were observed within the cytoplasm of cecal wall cells and within the nuclei of lyrate organ cells. Mature spores were ovoid and measured 2.65 x 1.21 microm. A polar filament coiled 3 to 4 times in the posterior half of the spore. Densely packed ribosomes often concealed the polar filament and other internal spore characteristics. Spores were observed in the cytoplasm of cells of numerous tissues and occasionally within the nuclei of lyrate organ cells. Numerous spores and presporal stages were observed within the ovary and developing eggs. The development and pathology of Species A and B were compared to those of Microsporidium phytoseiuli Bj?ornson, Steiner and Keddie, a microsporidium previously described from P. persimilis obtained from a commercial source in Europe. The occurrence of three species of microsporidia within P. persimilis from three sources raises questions regarding the origin of these pathogens. Because microsporidia may have profound impact on the performance of P. persimilis, consideration must be given to the identification and exclusion of microsporidia from field-collected specimens or from predators that may be shared among commercial sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号