首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2013年   1篇
  2008年   1篇
  2002年   1篇
  1999年   3篇
  1994年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   
2.
Auger-electron-emitting radioisotopes such as 125I produce DNA strand breaks within nanometer range of the decay site. Here we analyze these breaks in order to study changes in DNA conformation upon binding with cyclic AMP receptor protein (CRP) in solution. The clear difference we found in break frequency in the CRP-DNA complex, as compared to the naked DNA duplex, correlates with the increased distances between the deoxyriboses and the radioiodine atom caused by the CRP-induced kink observed in the cocrystal. Thus, we demonstrate that 125I radioprobing can be used to study fine conformational changes of DNA within DNA-protein complexes.  相似文献   
3.
4.
Radioprobing is suitable for tracing the DNA and RNA trajectories in nucleoprotein complexes in solution. The method is based on the analysis of the single-strand breaks produced by decay of iodine-125 incorporated in the C5 position of cytosine (Karamychev et al., 1999, 2012). Here, we used radioprobing to study the conformation of DNA in complex with the DNA binding domain (DBD) of the tumor-suppressor protein p53. Two recently crystallized DNA-p53 DBD complexes have different conformations of the CATG motifs: one with the Hoogsteen A:T pairs (Kitayner et al., 2010) and the other with the Watson–Crick pairs (Chen et al., 2010). The two complexes differ in the sequence of the central YYY|RRR junction: the first one has the C|G step and the second has the T|A step. Thus, it is interesting to apply the radioprobing method to the two DNA sequences used in crystallography to see if the local changes (T|A to C|G) in the center of the p53 response element would produce significant distortions in the CATG motifs. To this aim, the iodine-containing cytosine was incorporated in the duplexes containing p53-binding sites, in one of the two CATG motifs and the frequencies of DNA breaks were analyzed. Frequencies of breaks are negatively correlated with the iodine–sugar distances, thus, one can evaluate the changes in these distances upon DNA binding to a protein. The radioprobing distances obtained for both DNA sequences proved to be consistent with the Watson–Crick structure observed by Chen et al. (2010). We did not find any evidence of the Hoogsteen A:T base pair formation in the DNA-p53 DBD complexes in solution using our radioprobing method. The most significant changes in the break frequency distributions were detected in the central segment of the p53 binding site, YYY|RRR, which are consistent with an increase in DNA twisting in this region and local DNA bending and sliding (Nagaich et al., 1999). We interpret these p53-induced DNA deformations in the context of p53 binding to nucleosomal DNA (Sahu et al., 2010).  相似文献   
5.
6.
The propensity to associate or aggregate is one of the characteristic properties of many nonnative proteins. The aggregation of proteins is responsible for a number of human diseases and is a significant problem in biotechnology. Despite this, little is currently known about the effect of self-association on the structural properties and conformational stability of partially folded protein molecules. G-actin is shown to form equilibrium unfolding intermediate in the vicinity of 1.5 M guanidinium chloride (GdmCl). Refolding from the GdmCl unfolded state is terminated at the stage of formation of the same intermediate state. An analogous form, known as inactivated actin, can be obtained by heat treatment, or at moderate urea concentration, or by the release of Ca(2+). In all cases actin forms specific associates comprising partially folded protein molecules. The structural properties and conformational stability of inactivated actin were studied over a wide range of protein concentrations, and it was established that the process of self-association is rather specific. We have also shown that inactivated actin, being denatured, is characterized by a relatively rigid microenvironment of aromatic residues and exhibits a considerable limitation in the internal mobility of tryptophans. This means that specific self-association can play an important structure-forming role for the partially folded protein molecules.  相似文献   
7.
Triplex-forming oligonucleotides (TFO) are designed to bind sequence specifically to their DNA targets without a significant disturbance of the double helix. They have been proposed to deliver DNA-reactive agents to specific DNA sequences for gene targeting applications. We suggested the use of 125I-labeled TFO for delivery of the energy of radioiodine decay to specific genes. This approach is called antigene radiotherapy. Here we demonstrate the ability of 125I-labeled TFO to produce sequence-specific breaks within a target in the human mdrl gene in cultured cells. TFO and TFO conjugated with a nuclear localization signal peptide (NLS) were delivered into cells using cationic liposomes. This was done either alone or in the presence of an excess of a "ballast" oligonucleotide with an unrelated sequence. In all cases, nuclear localization of TFO and survival of the cells after treatment has been confirmed. Breaks in the gene target were analyzed by restriction enzyme digestion of the DNA recovered from the TFO-treated cells followed by Southern hybridization with DNA probes flanking the target sequence. We have found that TFO/NLS conjugates cleave the target in a concentration-dependent manner regardless of the presence of the "ballast" oligonucleotide. In contrast, TFO without NLS cleaved the target only in the presence of an excess of the "ballast." We hypothesize that TFO and TFO/NLS are delivered into the nucleus by different pathways. These results provide a new insight into the mechanism of intracellular transport of oligonucleotides and open new avenues for improvement of the efficacy of antigene therapies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号