首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   7篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   6篇
  2011年   4篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有98条查询结果,搜索用时 609 毫秒
1.
2.
3.
Hazard rate models with covariates.   总被引:3,自引:0,他引:3  
Many problems, particularly in medical research, concern the relationship between certain covariates and the time to occurrence of an event. The hazard or failure rate function provides a conceptually simple representation of time to occurrence data that readily adapts to include such generalizations as competing risks and covariates that vary with time. Two partially parametric models for the hazard function are considered. These are the proportional hazards model of Cox (1972) and the class of log-linear or accelerated failure time models. A synthesis of the literature on estimation from these models under prospective sampling indicates that, although important advances have occurred during the past decade, further effort is warranted on such topics as distribution theory, tests of fit, robustness, and the full utilization of a methodology that permits non-standard features. It is further argued that a good deal of fruitful research could be done on applying the same models under a variety of other sampling schemes. A discussion of estimation from case-control studies illustrates this point.  相似文献   
4.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
5.
6.
Glucans are fungal cell wall polysaccharides which stimulate innate immune responses. We determined the minimum unit ligand that would bind to glucan receptors on human U937 cells using laminarin-derived pentaose, hexaose, and heptaose glucan polymers. When U937 membranes were pretreated with the oligosaccharides and passed over a glucan surface, only the heptasaccharide inhibited the interaction of glucan with membrane receptors at a K(d) of 31 microM (95% CI 20-48 microM) and 100% inhibition. However, the glucan heptasaccharide did not stimulate U937 monocyte NFkappaB signaling, nor did it increase survival in a murine model of polymicrobial sepsis. Laminarin, a larger and more complex glucan polymer (M(w) = 7700 g/mol), only partially inhibited binding (61 +/- 4%) at a K(d) of 2.6 microM (99% CI 1.7-4.2 microM) with characteristics of a single binding site. These results indicate that a heptasaccharide is the smallest unit ligand recognized by macrophage glucan receptors. The data also indicate the presence of at least two glucan-binding sites on U937 cells and that the binding sites on human monocyte/macrophages can discriminate between glucan polymers. The heptasaccharide and laminarin were receptor antagonists, but they were not receptor agonists with respect to activation of NFkappaB-dependent signaling pathways or protection against experimental sepsis.  相似文献   
7.
Glucans are (1-3)-beta-D-linked polymers of glucose that are produced as fungal cell wall constituents and are also released into the extracellular milieu. Glucans modulate immune function via macrophage participation. The first step in macrophage activation by (1-3)-beta-D-glucans is thought to be the binding of the polymer to specific macrophage receptors. We examined the binding/uptake of a variety of water soluble (1-3)-beta-D-glucans and control polymers with different physicochemical properties to investigate the relationship between polymer structure and receptor binding in the CR3- human promonocytic cell line, U937. We observed that the U937 receptors were specific for (1-->3)-beta-D-glucan binding, since mannan, dextran, or barley glucan did not bind. Scleroglucan exhibited the highest binding affinity with an IC(50)of 23 nM, three orders of magnitude greater than the other (1-->3)-beta-D-glucan polymers examined. The rank order competitive binding affinities for the glucan polymers were scleroglucan>schizophyllan > laminarin > glucan phosphate > glucan sulfate. Scleroglucan also exhibited a triple helical solution structure (nu = 1.82, beta = 0.8). There were two different binding/uptake sites on U937 cells. Glucan phosphate and schizophyllan interacted nonselectively with the two sites. Scleroglucan and glucan sulfate interacted preferentially with one site, while laminarin interacted preferentially with the other site. These data indicate that U937 cells have at least two non-CR3 receptor(s) which specifically interact with (1-->3)-beta-D-glucans and that the triple helical solution conformation, molecular weight and charge of the glucan polymer may be important determinants in receptor ligand interaction.  相似文献   
8.
Intracellular proteins with a carboxy-terminal transmembrane domain and the amino-terminus oriented toward the cytosol are known as 'tail-anchored' proteins. Tail-anchored proteins have been of considerable interest because several important classes of proteins, including the vesicle-targeting/fusion proteins known as SNAREs and the apoptosis-related proteins of the Bcl-2 family, among others, utilize this unique membrane-anchoring motif. Here, we use a bioinformatic technique to develop a comprehensive list of potentially tail-anchored proteins in the human genome. Our final list contains 411 entries derived from 325 unique genes. We also analyzed both known and predicted tail-anchored proteins with respect to the amino acid composition of the transmembrane segments. This analysis revealed a distinctive composition of the membrane anchor in SNARE proteins.  相似文献   
9.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
10.
Sensitive method for chemical analysis of free cholesterol (FC) and cholesterol esters (CE) was developed. Mouse arteries were dissected and placed in chloroform-methanol without tissue grinding. Extracts underwent hydrolysis of cholesteryl esters and derivatization of cholesterol followed by liquid chromatography/mass spectrometry (LC/MS/MS) analysis. We demonstrated that FC and CE could be quantitatively extracted without tissue grinding and that lipid extraction simultaneously worked for tissue fixation. Delipidated tissues can be embedded in paraffin, sectioned, and stained. Microscopic images obtained from delipidated arteries have not revealed any structural alterations. Delipidation was associated with excellent antigen preservation compatible with traditional immunohistochemical procedures. In ApoE(-/-) mice, LC/MS/MS revealed early antiatherosclerotic effects of dual PPARalpha,gamma agonist LY465606 in brachiocephalic arteries of mice treated for 4 weeks and in ligated carotid arteries of animals treated for 2 weeks. Reduction in CE and FC accumulation in atherosclerotic lesions was associated with the reduction of lesion size. Thus, a combination of LC/MS/MS measurements of CE and FC followed by histology and immunohistochemistry of the same tissue provides novel methodology for sensitive and comprehensive analysis of experimental atherosclerotic lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号