首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492967篇
  免费   49934篇
  国内免费   231篇
  2018年   4499篇
  2016年   6046篇
  2015年   8453篇
  2014年   9850篇
  2013年   14421篇
  2012年   16057篇
  2011年   16584篇
  2010年   11176篇
  2009年   10236篇
  2008年   14725篇
  2007年   15554篇
  2006年   14688篇
  2005年   14097篇
  2004年   14302篇
  2003年   13667篇
  2002年   13415篇
  2001年   18188篇
  2000年   17964篇
  1999年   14771篇
  1998年   5876篇
  1997年   5863篇
  1996年   5540篇
  1995年   5467篇
  1994年   5350篇
  1993年   5308篇
  1992年   12860篇
  1991年   12645篇
  1990年   12652篇
  1989年   12414篇
  1988年   11669篇
  1987年   10969篇
  1986年   10253篇
  1985年   10800篇
  1984年   9145篇
  1983年   7858篇
  1982年   6320篇
  1981年   5754篇
  1980年   5353篇
  1979年   8552篇
  1978年   6814篇
  1977年   6423篇
  1976年   6163篇
  1975年   6506篇
  1974年   7159篇
  1973年   6981篇
  1972年   6379篇
  1971年   5773篇
  1970年   5041篇
  1969年   5036篇
  1968年   4662篇
排序方式: 共有10000条查询结果,搜索用时 41 毫秒
1.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
2.
3.
4.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
5.
6.
7.
8.
New scientific frontiers and emerging technologies within the life sciences pose many global challenges to society. Big Data is a premier example, especially with respect to individual, national, and international security. Here a Special Agent of the Federal Bureau of Investigation discusses the security implications of Big Data and the need for security in the life sciences.  相似文献   
9.
Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号