首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   6篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   9篇
  2015年   11篇
  2014年   6篇
  2013年   12篇
  2012年   12篇
  2011年   9篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   1篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
1.
The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16–0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.  相似文献   
2.
Protein concentration determination is a necessary in-process control for the downstream operations within biomanufacturing. As production transitions from batch mode to an integrated continuous bioprocess paradigm, there is a growing need to move protein concentration quantitation from off-line to in-line analysis. One solution to fulfill this process analytical technology need is an in-line index of refraction (IoR) sensor to measure protein concentration in real time. Here the performance of an IoR sensor is evaluated through a series of experiments to assess linear response, buffer matrix effects, dynamic range, sensor-to-sensor variability, and the limits of detection and quantitation. The performance of the sensor was also tested in two bioprocessing scenarios, ultrafiltration and capture chromatography. The implementation of this in-line IoR sensor for real-time protein concentration analysis and monitoring has the potential to improve continuous bioprocess manufacturing.  相似文献   
3.
The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients.  相似文献   
4.

Background

TIA and minor stroke have a high risk of recurrent stroke. Abnormalities on CT/CTA and MRI predict recurrent events in TIA and minor stroke. However there are many other imaging abnormalities that could potentially predict outcome that have not been assessed in this population. Also the definition of recurrent events used includes deterioration due to stroke progression or recurrent stroke and whether imaging is either of these is not known.

Aims

To improve upon the clinical, CT/CTA and MRI parameters that predict recurrent events after TIA and minor stroke by assessing further imaging parameters. Secondary aim was to explore predictors of stroke progression versus recurrent stroke.

Methods

510 consecutive TIA and minor stroke patients had CT/CTA and most had MRI. Primary outcome was recurrent events (stroke progression or recurrent stroke) within 90 days. Further imaging parameters were assessed for prediction of recurrent events (combined outcome of stroke progression and recurrent stroke). We also explored predictors of symptom progression versus recurrence individually.

Results

36 recurrent events (36/510, 7.1% (95% CI: 5.0–9.6)) including 19 progression and 17 recurrent strokes. On CT/CTA: white matter disease, prior stroke, aortic arch focal plaque≥4 mm, or intraluminal thrombus did not predict recurrent events (progression or recurrent stroke). On MRI: white matter disease, prior stroke, and microbleeds did not predict recurrent events. Parameters predicting the individual outcome of symptom progression included: ongoing symptoms at initial assessment, symptom fluctuation, intracranial occlusion, intracranial occlusion or stenosis, and the CT/CTA metric. No parameter was strongly predictive of a distinct recurrent stroke.

Conclusions

There was no imaging parameter that could improve upon our original CT/CTA or MRI metrics to predict the combined outcome of stroke progression or a recurrent stroke after TIA and minor stroke. We are better at using imaging to predict stroke progression rather than recurrent stroke.  相似文献   
5.
6.
Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.  相似文献   
7.
In the context of the bacterial RuvABC system, RuvA protein binds to and is involved in the subsequent processing of a four-way DNA structure called Holliday junction that is formed during homologous recombination. Four crystal structures of RuvA from Escherichia coli (EcoRuvA) showed that it was tetrameric, while neutron scattering and two other crystal structures for RuvA from Mycobacterium leprae (MleRuvA) and EcoRuvA showed that it was an octamer. To clarify this discrepancy, sedimentation equilibrium experiments by analytical ultracentrifugation were carried out and the results showed that MleRuvA existed as a tetramer-octamer equilibrium between 0.2-0.5 mg/ml in 0.1 M NaCl with a dissociation constant of 4 muM, and is octameric at higher concentrations. The same experiments in 0.3 M NaCl showed that MleRuvA is a tetramer up to 3.5 mg/ml, indicating that salt bridges are involved in octamer formation. Sedimentation equilibrium experiments with EcoRuvA showed that it was tetrameric at low concentration in both salt buffers but the protein was insoluble at high-protein concentrations in 0.1 M NaCl. It is concluded that free RuvA exists in an equilibrium between tetrameric and octameric forms in the typical concentration range and buffer found in bacterial cells.  相似文献   
8.
Cartilage glycosaminoglycan (GAG) synthesis and composition, upon which its structural integrity depends, varies with age, is modified by anabolic and catabolic stimuli, and is regulated by UDP-glucuronate availability. However, how such stimuli, prototypically represented by transforming growth factor-beta1 (TGF-beta1) and IL-1alpha, modify GAG synthesis during aging of normal human articular cartilage is not known. Using explants, we show that chondroitin sulfate (CS):total GAG ratios decrease, whereas C6S:C4S ratios increase with cartilage maturation, and that chondrocytes in the cartilage mid-zone, but not the superficial or deep zones, exhibit uridine 5'-diphosphoglucose dehydrogenase (UDPGD) activity, which is also increased in mature cartilage. We also show that IL-1alpha treatment reduces both total GAG and CS synthesis, decreases C6S:C4S ratios (less C6S), but fails to modify chondrocyte UDPGD activity at all ages. On the other hand, TGF-beta1 increases total GAG synthesis in immature, but not mature, cartilage (stimulates CS but not non-CS), age-independently decreases C6S:C4S (more C4S), and increases chondrocyte UDPGD activity in a manner inversely correlated with age. Our findings show that TGF-beta1, but not IL-1alpha, modifies matrix synthesis such that its composition more closely resembles "less mature" articular cartilage. These effects of TGF-beta1, which appear to be restricted to periods of skeletal immaturity, are closely associated although not necessarily mechanistically linked with increases in chondrocyte UDPGD activity. The antianabolic effects of IL-1alpha are, on the other hand, likely to be independent of any direct modification in UDPGD activity and manifest equally in human cartilage of all ages.  相似文献   
9.
Stem cells have evoked considerable excitement in the animal-owning public because of the promise that stem cell technology could deliver tissue regeneration for injuries for which natural repair mechanisms do not deliver functional recovery and for which current therapeutic strategies have minimal effectiveness. This review focuses on the current use of stem cells within veterinary medicine, whose practitioners have used mesenchymal stem cells (MSCs), recovered from either bone marrow or adipose tissue, in clinical cases primarily to treat strain-induced tendon injury in the horse. The background on why this treatment has been advocated, the data supporting its use and the current encouraging outcome from clinical use in horses treated with bone-marrow-derived cells are presented together with the future challenges of stem-cell therapy for the veterinary community.  相似文献   
10.
For over 30 years, stem cells have been used in the replenishment of blood and immune systems damaged by the cancer cells or during treatment of cancer by chemotherapy or radiotherapy. Apart from their use in the immuno-reconstitution, the stem cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. The recent concept of 'cancer stem cells' has directed scientific communities towards a different wide new area of research field and possible potential future treatment modalities for the cancer. Aim of this review is primarily focus on the recent developments in the use of the stem cells in the cancer treatments, then to discuss the cancer stem cells, now considered as backbone in the development of the cancer; and their role in carcinogenesis and their implications in the development of possible new cancer treatment options in future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号