首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1992年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有47条查询结果,搜索用时 515 毫秒
1.
N B Javitt 《FASEB journal》1990,4(2):161-168
Hep G2, a liver cell line derived from a human hepatoblastoma that is free of known hepatotropic viral agents, has been found to express a wide variety of liver-specific metabolic functions. Among these functions are those related to cholesterol and triglyceride metabolism. Confluent Hep G2 monolayers express normal low-density lipoprotein (LDL) receptors and continue to internalize and metabolize chylomicrons, very low-density lipoproteins (VLDL), LDL, and high-density lipoproteins. In lipoprotein-free medium, apolipoproteins A-I, A-II, B, C, and E accumulate in the medium together with cholesterol, cholesteryl ester, triglyceride, and all the primary bile acids. The regulation of their synthesis and secretion is not fully known and their interrelationships have not been established. Because Hep G2 cells express these and other components of cholesterol and triglyceride metabolism, they are a microcosm for studying the central role of the liver.  相似文献   
2.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   
3.
The direct quantitative measurement of total bile acids in serum has been achieved using an enzymatic fluorescent method with a dual-beam spectrophotofluorimeter. By use of a 3alpha-hydroxysteroid dehydrogenase, oxidation of bile acids with NAD is completed in 200 seconds with the observed NADH fluorescence being proportional to the concentration of serum bile acids. This method is rapid (8 minutes per individual sample), has an intrinsic sensitivity of +/- micronM of total bile acids, requires no sample preparation and less than 0.8 ml of serum. Paired data analysis using enzymatic fluorescence and gas-liquid chromatographic methods gives a correlation coefficient (r) of 0.99 for 34 samples ranging from 2 to 530 micronM.  相似文献   
4.
As a result of an alternative exon 1, the gene for human hydroxysteroid sulfotransferase (SULTB1) encodes for two peptides differing only at their amino termini. The SULT2B1b isoform preferentially sulfonates cholesterol. Conversely, the SULT2B1a isoform avidly sulfonates pregnenolone but not cholesterol. The outstanding structural feature that distinguishes the SULT2B1 isoforms from the prototypical SULT2A1 isozyme is the presence of extended amino- and carboxyl-terminal ends in the former. Investigating the functional significance of this unique characteristic reveals that removal of 53 amino acids from the relatively long carboxyl-terminal end that is common to both SULT2B1 isoforms has no effect on the catalytic activity of either isoform. On the other hand, removal of 23 amino acids from the amino-terminal end that is unique to SULT2B1b results in loss of cholesterol sulfotransferase activity, whereas removal of 8 amino acids from the amino-terminal end that is unique to SULT2B1a has no effect on pregnenolone sulfotransferase activity. Deletion analysis along with site-directed mutagenesis of SULT2B1b reveal that the amino acid segment 19-23 residues from the amino terminus and particularly isoleucines at positions 21 and 23 are crucial for cholesterol catalysis. In the gene for SULT2B1, exon 1B encodes for only the unique amino-terminal region of SULT2B1b; however, exon 1A encodes for the unique amino-terminal end of SULT2B1a plus an additional 48 amino acids. Thus, if the gene for SULT2B1 employs exon 1B, cholesterol sulfotransferase is synthesized, whereas if exon 1A is used, pregnenolone sulfotransferase is produced.  相似文献   
5.
Although a variety of oxidation products of cholesterol occur in vitro, enzyme-catalyzed oxidations can occur at only 5 sites on the cholesterol molecule: C7alpha, C22R, C24S, C25, and C27. The genes coding for the synthesis of these enzymes were cloned, the tissue expressions of the mRNAs were identified, and the enzymes were characterized. The biologic properties of the hydroxycholesterol molecules that are initially generated and their metabolites are under study. Downregulation of cholesterol synthesis via the SREBP/SCAP regulatory pathway is common to the initial hydroxycholesterols, but more variations exist with respect to these intermediates functioning as ligands for the nuclear receptor LXRalpha. Because this receptor regulates the expression of cholesterol 7alpha-hydroxylase and ABC transporter proteins, hydroxycholesterols and their intermediate steroid metabolites modulate a number of biologic processes. Metabolism of 22S-hydroxycholesterol to steroid hormones differs from that of the other hydroxycholesterols which form mostly steroid acidic products, otherwise known as bile acids. In vivo estimates of their production rates in intact humans indicate that 24S and 25-hydroxycholesterol account for no more than 7% of total bile acid production per day. Current evidence indicates that cholesterol 7alpha-hydroxycholesterol generated in the liver is the major source of bile acids in older adults. It is also known that the cholesterol 27-hydroxylation pathway is the only one expressed in fetal and neonatal life. Precisely when the proportions contributed by these two metabolic pathways to bile acid synthesis begin to shift and the role of the cholesterol 27-hydroxylase pathway in reverse cholesterol transport mandate further study.  相似文献   
6.
7.
A new paper electrophoretic method for the separation of bile acids into five groups, (1) unconjugated, (2) glycine conjugates and (3) taurine conjugates, and (4) and (5) the respective monosulfates, is described. Rapid and accurate qualitative and quantitative estimations of each group are obtained by densitometry after internal standardization and phosphomolybdate color development. The technique can be done in the routine clinical laboratory and is useful for the detection of diseases affecting the enterohepatic circulation of bile acids.  相似文献   
8.
26-Hydroxycholesterol: synthesis, metabolism, and biologic activities   总被引:1,自引:0,他引:1  
Cholest-5-ene-3 beta,26-diol (26-hydroxycholesterol) is synthesized by a mitochondrial P-450 enzyme that appears to be widely distributed in tissues. Together with other C-27 steroid intermediates it is transported to the liver and metabolized to bile acids. Although 26-hydroxycholesterol is transported in plasma lipoproteins mostly as the fatty acid ester, neither its assembly and orientation within lipoproteins nor its mechanism of transport across the sinusoidal liver membrane is known. Cell culture studies indicate that 26-hydroxycholesterol can inhibit both cholesterol synthesis and low density lipoprotein (LDL) receptor activity. Inhibition of DNA synthesis also occurs and may not be related to the reduction in HMG-CoA reductase activity. The relationship of these in vitro activities to the physiologic role(s) of 26-hydroxycholesterol remains to be clarified. A clue to its biologic role is the knowledge that markedly decreased 26-hydroxylase activity appears to be the molecular basis of cerebrotendinous xanthomatosis, an inborn error of metabolism characterized by a significant decrease in 26-hydroxycholesterol and bile acid synthesis and an increase in cholesterol synthesis.  相似文献   
9.
Rat liver peroxisomes have been found to oxidize 26-hydroxycholesterol, the product of cholesterol C-26 hydroxylation to 3 beta-hydroxy-5-cholenoic acid. Peroxisomes were purified by differential and equilibrium density centrifugation in a steep linear metrizamide gradient to greater than 95% purity. Purity of peroxisomes was determined by measurement of specific marker enzymes. The activities of cytochrome oxidase (a mitochondrial marker) and acid phosphatase (a lysosomal marker) in the purified peroxisome fractions were below the level of detection. Esterase activity indicated a 2-4% microsomal contamination. Subsequent to incubation of peroxisomes with [16,22-3H]-26-hydroxycholesterol, the reaction products were extracted, methylated, acetylated, and subjected to thin-layer, high pressure liquid, and gas-liquid chromatographic analyses. 3 beta-Hydroxy-5-cholenoic acid was the major identifiable metabolite of 26-hydroxycholesterol. Incubations of pure microsomal fractions (greater than 99%) with 26-hydroxycholesterol under the same conditions demonstrated that the production of 3 beta-hydroxy-5-cholenoic acid by peroxisomes was not attributable to microsomal contamination. This study demonstrates that peroxisomes participate in the side-chain oxidation of intermediates in bile acid synthesis.  相似文献   
10.
1. The effects of 26-aminocholesterol and 26-thiacholesterol on cholesterol synthesis and LDL (low-density lipoprotein)-receptor activity were compared with naturally occurring 26-hydroxycholesterol utilizing both human fibroblasts and hepatoma (Hep G2) cells. 2. At equimolar concentrations (0.625 microM), down-regulation of LDL-receptor activity and cholesterol synthesis was greater with human fibroblasts than with Hep G2 cells. 3. At much higher concentrations (5-20 microM) the 26-thia analogue had little effect on either cholesterol synthesis or LDL-receptor activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号