首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   6篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
排序方式: 共有6条查询结果,搜索用时 167 毫秒
1
1.
Mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera) are prominent representatives of aquatic macroinvertebrates, commonly used as indicator organisms for water quality and ecosystem assessments. However, unambiguous morphological identification of EPT species, especially their immature life stages, is a challenging, yet fundamental task. A comprehensive DNA barcode library based upon taxonomically well‐curated specimens is needed to overcome the problematic identification. Once available, this library will support the implementation of fast, cost‐efficient and reliable DNA‐based identifications and assessments of ecological status. This study represents a major step towards a DNA barcode reference library as it covers for two‐thirds of Germany's EPT species including 2,613 individuals belonging to 363 identified species. As such, it provides coverage for 38 of 44 families (86%) and practically all major bioindicator species. DNA barcode compliant sequences (≥500 bp) were recovered from 98.74% of the analysed specimens. Whereas most species (325, i.e., 89.53%) were unambiguously assigned to a single Barcode Index Number (BIN) by its COI sequence, 38 species (18 Ephemeroptera, nine Plecoptera and 11 Trichoptera) were assigned to a total of 89 BINs. Most of these additional BINs formed nearest neighbour clusters, reflecting the discrimination of geographical subclades of a currently recognized species. BIN sharing was uncommon, involving only two species pairs of Ephemeroptera. Interestingly, both maximum pairwise and nearest neighbour distances were substantially higher for Ephemeroptera compared to Plecoptera and Trichoptera, possibly indicating older speciation events, stronger positive selection or faster rate of molecular evolution.  相似文献
2.
The ‘Symphyta’ is a paraphyletic assemblage at the base of the order Hymenoptera, comprising 14 families and about 8750 species. All have phytophagous larvae, except for the Orussidae, which are parasitoids. This study presents and evaluates the results of DNA barcoding of approximately 5360 specimens of ‘Symphyta’, mainly adults, and 4362 sequences covering 1037 species were deemed of suitable quality for inclusion in the analysis. All extant families are represented, except for the Anaxyelidae. The majority of species and specimens are from Europe, but approximately 38% of the species and 13% of the specimens are of non‐European origin. The utility of barcoding for species identification and taxonomy of ‘Symphyta’ is discussed on the basis of examples from each of the included families. A significant level of cryptic species diversity was apparent in many groups. Other attractive applications include the identification of immature stages without the need to rear them, community analyses based on metabarcoding of bulk samples and association of the sexes of adults.  相似文献
3.
The superfamily Dytiscoidea contains six families with an aquatic lifestyle, with most of its extant diversity in two families: the burrowing water beetles (Noteridae) and the diving beetles (Dytiscidae). The other families have few species (up to six) and generally highly disjunct extant distributions. Aspidytidae currently contains one genus with two species, one in China and one in South Africa. Here we provide the first molecular data for the Chinese species, allowing us to explore the phylogenetic relationships and position of both species of this small family for the first time. Based on a matrix of 11 genes we inferred a phylogenetic hypothesis for Dytiscoidea including all extant families. Unexpectedly, Aspidytidae were consistently recovered as paraphyletic relative to Amphizoidae, despite being well characterized by apparently synapomorphic adult features. A re‐examination of larval characters in the two aspidytid species revealed that the larva of the Chinese species is strikingly similar to that of Amphizoidae. Both share a series of plesiomorphic features but also some potential synapomorphies, including a dense vestiture of short setae on the head capsule, anteriorly shifted posterior tentorial grooves and widely separated labial palps. Arguably these features may belong to the groundplan of the clade Aspidytidae + Amphizoidae, with far‐reaching secondary modifications (including reversals) in the South African Aspidytes niobe. At present we retain the family Aspidytidae, however, due to the strong adult morphological synapomorphies of the two extant species, and the fact that the molecular paraphyly of the family may result from the highly divergent nature of the two extant species. This long evolutionary separation and strong divergence, in terms of gene sequences and larval features, is undeniable, substantial levels of saturation in third codon positions of protein‐coding genes being present between the two taxa. We address this issue taxonomically by introducing the new genus S inaspidytes gen. nov. for the Chinese Aspidytes wrasei. The continued contentious relationships amongst Dytiscidae, Hygrobiidae, Aspidytidae and Amphizoidae highlight the need for more data to address dytiscoid phylogenetics, possibly involving a genomic approach. © 2016 The Linnean Society of London  相似文献
4.
Butterflies of the genus Polyura form a widespread tropical group distributed from Pakistan to Fiji. The rare endemic Polyura epigenes Godman & Salvin, 1888 from the Solomon Islands archipelago represents a case of marked island polymorphism. We sequenced museum specimens of this species across its geographic range to study the phylogeography and genetic differentiation of populations in the archipelago. We used the Bayesian Poisson tree processes and multispecies coalescent models, to study species boundaries. We also estimated divergence times to investigate the biogeographic history of populations. Our molecular species delimitation and nuclear DNA network analyses unambiguously indicate that Malaita populations form an independent metapopulation lineage, as defined in the generalized lineage concept. This lineage, previously ranked as a subspecies, is raised to species rank under the name Polyura bicolor Turlin & Sato, 1995  stat. nov. Divergence time estimates suggest that this lineage split from its sister taxon in the late Pleistocene. At this time, the bathymetric isolation of Malaita from the rest of the archipelago probably prevented gene flow during periods of lower sea level, thereby fostering allopatric speciation. The combination of molecular species delimitation methods, morphological comparisons, and divergence time estimation is useful to study lineage diversification across intricate geographic regions.  相似文献
5.
Anisomeriini diving beetles contain only two enigmatic species, representing a remarkable disjunction between the Pacific Juan Fernández Islands (Anisomeria bistriata) and the South Atlantic Tristan da Cunha Archipelago (Senilites tristanicola). They belong to the Colymbetinae, which contain 140 species worldwide. Here we aim to reconstruct the evolutionary history of the Anisomerinii and use > 9000 bp DNA sequence data from 13 fragments of 12 loci for a comprehensive sampling of Colymbetinae species. Analyses under different optimization criteria converge on very similar topologies, and show unambiguously that Anisomeria bistriata and Senilites tristanicola belong to the Neotropical Rhantus signatus species group, a comparatively recent clade within Colymbetinae. Anisomeriini therefore are synonomized with Colymbetini and both species are transferred to Rhantus accordingly, resulting in secondary homonymy of Rhantus bistriatus (Brullé, 1835) with Rhantus bistriatus (Bergsträsser, 1778). We propose the replacement name Rhantus selkirki Jäch, Balke & Michat nom. nov. for the Juan Fernández species. Presence of these species on remote islands is therefore not relictary, but the result of more recent range expansions out of mainland South America. Finally, we suggest that Carabdytini should be synonymized with Colymbetini. Our study underpins the Hennigian principle that a natural classification can be derived only from the search for shared apomorphies between species, not from differences.  相似文献
6.
This study presents DNA barcode records for 4118 specimens representing 561 species of bees belonging to the six families of Apoidea (Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae and Melittidae) found in Central Europe. These records provide fully compliant barcode sequences for 503 of the 571 bee species in the German fauna and partial sequences for 43 more. The barcode results are largely congruent with traditional taxonomy as only five closely allied pairs of species could not be discriminated by barcodes. As well, 90% of the species possessed sufficiently deep sequence divergence to be assigned to a different Barcode Index Number (BIN). In fact, 56 species (11%) were assigned to two or more BINs reflecting the high levels of intraspecific divergence among their component specimens. Fifty other species (9.7%) shared the same Barcode Index Number with one or more species, but most of these species belonged to a distinct barcode cluster within a particular BIN. The barcode data contributed to clarifying the status of nearly half the examined taxonomically problematic species of bees in the German fauna. Based on these results, the role of DNA barcoding as a tool for current and future taxonomic work is discussed.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号